Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=1/2+(1/2)^2+(1/2)^3+...+(1/2)^98+(1/2)^99+(1/2)^99
=>A=1/2+12/22+13/23+...+198/298+199/299+199/299
=>A=1/2+1/22+1/23+...+1/298+1/299+1/299
=>2A-1/299=1+1/2+1/22+...+1/298
=>(2A-1/299)-(A-1/299)=(1+1/2+1/22+...+1/298)-(1/2+1/22+1/23+...+1/298+1/299)
=>(2A-1/299)-(A-1/299)=1-1/299
=>A=1-1/299 +1/299=1
vậy A=1
chắc thế
\(=-\left(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9800}{9801}\right)\)
\(=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{98.100}{99.99}\right)\)
\(=-\left(\frac{1.2.3....98}{2.3...99}.\frac{3.4.5...100}{2.3...99}\right)\)
\(=-\left(\frac{1}{99}.50\right)\)
\(=-\frac{50}{99}\)
Chúc hok tốt!!!
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\left(\frac{1}{99^2}-1\right)\)
= \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{98.100}{99.99}\)
= \(\frac{\left(1.2.3...98\right).\left(3.4.5...100\right)}{\left(2.3.4...99\right).\left(2.3.4...99\right)}\)
= \(\frac{100}{99.2}\)= \(\frac{50}{99}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+.............+\frac{1}{2^{99}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+...........+\frac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+.......+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{99}}\)
\(\Leftrightarrow2^{99}.A=2^{99}-1\left(đpcm\right)\)
A=\(\left(\frac{1}{2^2}-1\right)\)\(\left(\frac{1}{3^2}-1\right)\)\(\left(\frac{1}{4^2}-1\right)\)...\(\left(\frac{1}{98^2}-1\right)\)\(\left(\frac{1}{99^2}-1\right)\)
Do tích A có(99-2)+1=98 thừa số nguyên âm nên tích A dương
A=\(\frac{3}{4}\).\(\frac{8}{9}\).\(\frac{15}{16}\)...\(\frac{97.99}{98^2}\).\(\frac{98.100}{99^2}\)=\(\frac{1.2.3.4.5...97.98.99.100}{2^2.3^3.4^2...98^2.99^2}\)
=\(\frac{1.2.3.4...98}{2.3.4...98.99}.\frac{3.4.5...99.100}{2.3.4...98.99}=\frac{1}{99}.\frac{100}{2}=\frac{50}{99}\)
Tính 2A rồi tính 2A - A là ra A
\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{99}\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{98}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)\)
\(A=1-\frac{1}{2^{99}}=\frac{2^{99}-1}{2^{99}}\)