Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)^2=a^2+b^2+2ab=a^2+b^2-2ab+4ab=\left(a-b\right)^2-4ab\)
\(\left(a-b\right)^2=a^2+b^2-2ab=a^2+b^2+2ab-4ab=\left(a-b\right)^2-4ab\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\Rightarrow\left(a-b\right)^2=7^2-4\cdot12=49-48=1\)
\(\left(a+b\right)^2=\left(a-b\right)^2-4ab\Rightarrow\left(a+b\right)^2=20^2-4\cdot3=388\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)
\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)
\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)
Từ (1) và (2) suy ra ĐPcm