K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Áp dụng hằng đẳng thức \(a^n-1=\left(a-1\right)\left(a^{n-1}+a^{n-2}+....+a^2+a+1\right)\)

để thu gọn biểu thức rồi lập hiệu A - B để so sánh

8 tháng 8 2016

Biết chết liền

< nha bn mk hok lop 7 => ko answer dc

14 tháng 3 2016

Với a/b<1 thì a/b<a+n/b+n

Vời a/b> 1 thì ngược lại

3 tháng 3 2016

24. trong vio toán  ak

12 tháng 5 2021

a, Ta có : \(x=81\Rightarrow\sqrt{x}=9\)

Thay \(\sqrt{x}=9\)vào biểu thức A ta được : 

\(A=\frac{2}{9+1}=\frac{2}{10}=\frac{1}{5}\)

b, Ta có : \(P=\frac{B}{A}\)hay\(P=\frac{\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}}{\frac{2}{\sqrt{x}+1}}\)

\(=\frac{1+\sqrt{x}}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c, Ta có \(\frac{1}{2}=\frac{\sqrt{x}}{2\sqrt{x}}\)mà \(\sqrt{x}< \sqrt{x}+1\)

nên \(P>\frac{1}{2}\)

12 tháng 5 2021

a) \(A=\frac{2}{\sqrt{x}+1}=\frac{2}{\sqrt{81}+1}=\frac{2}{9+1}=\frac{1}{5}\)

b) \(B=\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}\)

\(=\frac{1+\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}=\frac{1}{\sqrt{x}}\)

\(\Rightarrow P=\frac{B}{A}=\frac{1}{\sqrt{x}}\div\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c) Ta có: \(P=\frac{\sqrt{x}+1}{2\sqrt{x}}=\frac{1}{2}+\frac{1}{\sqrt{x}}+\frac{1}{2}+0=\frac{1}{2}\)

=> P>1/2

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

6 tháng 3 2020

- Ta có : \(a^3+b^3+c^3=3abc\)

=> \(a^3+b^3+c^3-3abc=0\)

=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(a+b+c\ne0\)

=> \(a^2+b^2+c^2-ab-bc-ac=0\)

=> \(\frac{\left(a^2-2ab+b^2\right)+\left(b^2-2ac+c^2\right)+\left(c^2-2ac+a^2\right)}{2}=0\)

=> \(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)

=> \(a-b=b-c=c-a=0\)

=> \(a=b=c\)

- Thay a = b = c vào biểu thức N ta được :

\(N=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Vậy giá trị của N = \(\frac{1}{3}\) khi \(a^3+b^3+c^3=3abc\)\(a+b+c\ne0\)

31 tháng 1 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=-\frac{a+b}{c\left(a+b+c\right)}\)

\(TH1:a+b=0\Rightarrow a=-b\)

Mà n lẻ nên \(a^n=-b^n\)

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}\)

\(\Rightarrow\frac{1}{a^n+b^n+c^n}=\frac{1}{c^n}\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

\(TH2:a+b\ne0\Rightarrow ab=-c\left(a+b+c\right)\)

\(\Rightarrow ab+bc+ca+c^2=0\Rightarrow\left(a+c\right)\left(b+c\right)=0\)\(\Rightarrow\orbr{\begin{cases}a=-c\\b=-c\end{cases}}\Rightarrow\orbr{\begin{cases}a^n=-c^n\\b^n=-c^n\end{cases}}\)(n lẻ)

\(\cdot a^n=-c^n\Rightarrow\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{b^n}\)    ;   \(\Rightarrow\frac{1}{a^n+b^n+c^n}=\frac{1}{b^n}\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

*\(b^n=-c^n\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n}\)    ;    \(\Rightarrow\frac{1}{a^n+b^n+c^n}=\frac{1}{a^n}\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

Vậy suy ra đpcm

(mik ms lp 8 thôi nên nếu mà sai mong pn thông cảm)

Khôi Bùi chưa chắc đâu nha bạn, đầy người không biết ra...