Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a<b
=>a.n<b.n
=>a.n+a.b< b.n +a.b
=>a(b+n)<b(a+n)
=>a/b<a+n/b+n
Vậy nếu a<b thì a/b <a+n / b+n
b) Ta có : a>b
=>a.n>b.n
=>a.n+a.b>b.n+a.b
=>a(b+n)>b(a+n)
=>a/b>a+n/b+n
Vậy a>b thì a/b> a+n/b+n
c) Ta có : a=b
=>a.n=b.n
=>a.n+ a.b =b.n+a.b
=>a(b+n)=b(a+n)
=>a/b=a+n/b+n
Vậy a= b thì a/b =a+n/b+n
c, Gọi ƯCLN(a; b) = d; d \(\in\) k
⇒ d = 1944 : 108 = 18
⇒ a = 18.k; b = 18.n (k;n) =1; k;n \(\in\) N*
⇒18.k.18.n = 1944
⇒k.n =1944 : (18.18)
k.n = 6
6 = 2.3 Ư(6) = {1; 2; 3;6)
⇒(k; n) = (1; 6); (2; 3); (3; 2); (6; 1)
⇒ (a; b) = (18; 108); (36; 54); (54; 36); (108; 18)
Vì a> b nên (a; b) = (54; 36); (108; 18)
a, a + b = 72; Ư CLN(a; b) = 9 (a > b)
a = 9.k; b = 9.d (k; d) = 1; k; d \(\in\) N*; k >d
9.k + 9.d = 72
9.(k + d) = 72
k + d = 72 : 9
k + d = 8
(k; d) =(1; 7); (2; 6); (3; 5); (4; 4); (5; 3); (6; 2); (7; 1)
vì (k;d) = 1; k > d ⇒ (k;d) = (5; 3); (7; 1)
⇒ (a; b) = (45; 27); (63; 9)
a/
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=\)
\(=ab-ac-ab-bc+ac-bc=-2bc\)
b/
\(a\left(1-b\right)+a\left(a^2-1\right)=\)
\(=a-ab+a^3-a=a^3-ab=a\left(a^2-b\right)\)
c/
\(a\left(b-x\right)+x\left(a+b\right)=ab-ax+ax+bx=\)
\(=ab+bx=b\left(a+x\right)\)
Lời giải:
\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-c)(b-a)}+\frac{a-b}{(c-a)(c-b)}=\frac{-(b-c)^2-(c-a)^2-(a-b)^2}{(a-b)(b-c)(c-a)}\)
\(=\frac{-2(a^2+b^2+c^2-bc-ab-ac)}{(a-b)(b-c)(c-a)}=\frac{-2[(a^2+bc-ab-ac)+(b^2+ac-ba-bc)+(c^2+ab-ca-cb)]}{(a-b)(b-c)(c-a)}\)
\(=\frac{-2[(a-b)(a-c)+(b-c)(b-a)+(c-a)(c-b)]}{(a-b)(b-c)(c-a)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
\(a^3-b^3=\left(a-b\right).\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow\)\(a^3-b^3=a^3+a^2b+ab^2-a^2b-ab^2-b^3\)
\(\Leftrightarrow\)\(a^3-b^3=a^3-b^3\)
\(\Rightarrow\)\(đpcm\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\Rightarrow\hept{\begin{cases}a+b+c=3a\\a+b+c=3b\\a+b+c=3c\end{cases}}\Rightarrow a=b=c\)
Khi đó: \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=2^3=8\)
Vậy B = 8
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Leftrightarrow\frac{a+b}{c}-1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)
\(\Leftrightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)
\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\)
\(B=\frac{a+b}{c}.\frac{c+a}{b}.\frac{b+c}{a}=2.2.2=8\)
\(A=\left(a-b\right)-\left(c-a\right)+\left(-a+b+c\right)\)
\(A=a-b-c+a-a+b+c=a\left(1\right)\)
\(B=-\left(b-c\right)+\left(b-c+a\right)\)
\(B=-b+c+b-c+a=a\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A=B=a\)
cho vé báo cáo miễn
a+b=b+a a=a,a^=a^ b=b