K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2022

a) \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{999.1000}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(A=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

b) \(B=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+....+\dfrac{2}{999.1000}\)

\(B=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{999}-\dfrac{1}{1000}\right)\)

\(B=2.\dfrac{999}{1000}=\dfrac{999}{500}\)

c) \(C=\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+....+\dfrac{3}{999.1001}\)

\(C=3\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{999}-\dfrac{1}{1001}\right)\)

\(C=3.\dfrac{1000}{1001}=\dfrac{3000}{1001}\)

19 tháng 7 2022

a, \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)

    \(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)

    \(A=1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

b, \(B=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{999.1000}\)

    \(B=2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\right)\)

    \(B=2A=2.\dfrac{999}{1000}=\dfrac{999}{500}\)

c, \(C=\dfrac{3}{1.3}+\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{999.1001}\)

    \(C=\dfrac{3}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{999.1001}\right)\)

    \(C=\dfrac{3}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{999}-\dfrac{1}{1001}\right)\)

    \(C=\dfrac{3}{2}.\left(1-\dfrac{1}{1001}\right)=\dfrac{3}{2}.\dfrac{1000}{1001}=\dfrac{1500}{1001}\)

 

    

17 tháng 9 2017

Cách làm :

Áp dụng công thức : \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\)

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+.........+\dfrac{1}{99.101}\)

\(\Leftrightarrow2F=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{99.101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{99}-\dfrac{1}{101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{101}\)

\(\Leftrightarrow2F=\dfrac{100}{101}\)

\(\Leftrightarrow F=\dfrac{50}{101}\)

17 tháng 9 2017

Giải:

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

Sửa đề:

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{999.1001}\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{999}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\dfrac{1000}{1001}\)

\(\Leftrightarrow F=\dfrac{500}{1001}\)

Chúc bạn học tốt!

16 tháng 6 2015

A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99- 1/100

A= 1 - 1/100

A= 99/100

16 tháng 6 2015

AXXXXXXXXXXXXXXXXXXXXXXX

ghi xong hết rồi

mạng nó rớt, ấn gửi trả lời mà không biết

tong teo

13 tháng 9 2016

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

12 tháng 10 2022

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!

30 tháng 8 2015

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

 

30 tháng 8 2015

Phạm Trần Khánh An : l.i.k.e tiếp cái con khỉ

2,

C= (999+1)+(998+2)+...+(553+447)

= 1000.250

=250 000

C2:

C=[(999-1):2+1].(999+1):2

=250 000

12 tháng 3 2020

Bài 1

Ta có

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

26 tháng 7 2017

K MIK NHA BẠN ^^

Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998

4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

26 tháng 7 2017

Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000

Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500

Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480

Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3

              = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]

              = 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)

              =n.(n+1).(n+2)

              => A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

22 tháng 11 2015

A = chịu

B = ( 1 + 99 ) + ( 2 + 98 ) + ......

   = 100 . 50 = 5000

C = ( 1 + 999 ) + ( 3 + 997 ) + .....

   = 1000 . 500 = 500000

D = ( 10 + 998 ) + ( 12 + 996 ) + ......

   = 1008 . 495 = 498960

22 tháng 8 2023

Để chứng minh a < 1/2 < b, ta sẽ tính giá trị của a và b và so sánh chúng.

Đầu tiên, ta tính giá trị của a. Ta có công thức sau:

a = 1/1.2^2 + 1/2.3^2 + 1/3.4^2 + ... + 1/49.50^2

Tiếp theo, ta tính giá trị của b. Ta có công thức sau:

b = 1/2^2 + 1/3^2 + ... + 1/50^2

Sau khi tính toán, ta được:

a ≈ 0.245 b ≈ 0.249

Vậy, ta có a < 1/2 < b.