K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2,

C= (999+1)+(998+2)+...+(553+447)

= 1000.250

=250 000

C2:

C=[(999-1):2+1].(999+1):2

=250 000

12 tháng 3 2020

Bài 1

Ta có

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

26 tháng 7 2017

K MIK NHA BẠN ^^

Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998

4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

26 tháng 7 2017

Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000

Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500

Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480

Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3

              = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]

              = 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)

              =n.(n+1).(n+2)

              => A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

18 tháng 11 2016

B1

Số số hạng của dãy là : (99 - 1) : 1 + 1 = 99 ( số )

Tổng của dãy là : (99 + 1) x 99 : 2 = 4950

B2

Số số hạng của dãy là : (999 - 1) : 2 + 1 = 500 (số)

Tổng của dãy là : (999 + 1) x 500 : 2 = 250000

B3

Số số hạng của dãy là : (998 - 10) : 2 + 1 = 495(số)

Tổng của dãy là : (998 + 10) x 495 : 2 = 249480

B4

B5

Để mình thử đã rồi giải cho

Tk hoặc sửa hộ mình nhé

18 tháng 11 2016

ko can k

lop 3 em cho anh lop 7 (hsg) bai 1

B=(1+99)+(2+98)+...+(49+51)+50

=49*100+50=4950

22 tháng 11 2015

A = chịu

B = ( 1 + 99 ) + ( 2 + 98 ) + ......

   = 100 . 50 = 5000

C = ( 1 + 999 ) + ( 3 + 997 ) + .....

   = 1000 . 500 = 500000

D = ( 10 + 998 ) + ( 12 + 996 ) + ......

   = 1008 . 495 = 498960

12 tháng 3 2017

1. B = 1+ (2+ 3 +4+.... +98 +99)                  

        = 1+ 98

         = 99

2

15 tháng 9 2019

Bài 1:

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

Bài 2:

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

#Châu's ngốc

15 tháng 9 2019

lm lại bài 2:

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

=>A=\(\frac{n\times\left(n+1\right)\left(n+2\right)}{3}\)

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

30 tháng 9 2023
Bài 1: Tính A = 1.2 + 2.3 + 3.4 +...+n. (n+1)Giai: 

=> Ta thấy rằng mỗi số hạng trong dãu số trên đều là tích của hai số tự nhiên liên tiếp, khi đó: 

Gọi a1 = 1.2  → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2

Tương tự:

a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3

a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4  ....

a(n - 1) = (n - 1).n → 3a(n - 1) = 3(n - 1)n → 3a(n - 1) = (n - 1).n.(n + 1) - (n - 2).(n - 1).n

an = n.(n - 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng vế với vế của các đẳng thức trên ta được: 

3(a1 + a2 + a3 +...+ an) = n(n + 1)(n + 2) 

-> A = n.(n+1) .( n+2) / 3

 

 
30 tháng 9 2023

Khó hỉu v 🫤

E ko hỉu 

20 tháng 6 2017

A= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>A

20 tháng 6 2017

ta có : A = 1.2 + 2.3 + 3.4 + ...... + n(n + 1) 

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + n(n + 1)(n + 2)

=> 3A = n(n + 1)(n + 2)

=> A = n(n + 1)(n + 2)/3 

9 tháng 8 2016

\(A=1.2+2.3+...+n\left(n+1\right)\)

\(=>3A=\left(3-0\right).1.2+\left(4-1\right).2.3+...+\left[\left(n+2\right)-\left(n-1\right)\right].n.\left(n+1\right)\)

\(=3.1.2-0.1.2+4.2.3-1.2.3+...+\left(n+2\right).n.\left(n+1\right)-\left(n-1\right).n.\left(n+1\right)\)

\(=1.2.3-0.1.2+2.3.4-1.2.3+...+n.\left(n+1\right).\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\)

\(=-0.1.2+n.\left(n+1\right).\left(n+2\right)\)

\(=n.\left(n+1\right).\left(n+2\right)\)

\(=>A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

9 tháng 8 2016

Có 2 cách