Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{9998.1997}-............-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\left(\dfrac{1}{1999.1998}+\dfrac{1}{1998.1997}+........+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{1998}-\dfrac{1}{1999}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\left(1-\dfrac{1}{1999}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2000.1999}-\dfrac{1998}{1999}\)
\(A=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{1998.1997}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)\(A=\dfrac{1}{1999.2000}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{1997.1998}+\dfrac{1}{1998.1999}\right)\)
\(A=\dfrac{1}{1999.2000}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1997}-\dfrac{1}{1998}+\dfrac{1}{1998}-\dfrac{1}{1999}\right)\)
\(A=\dfrac{1}{1999.2000}-\dfrac{1998}{1999}\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2020.2021}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2020}-\frac{1}{2021}\)
\(=1-\frac{1}{2021}=\frac{2020}{2021}\)
b) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{21.23}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{21.23}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{21}-\frac{1}{23}\right)=\frac{1}{2}\left(1-\frac{1}{23}\right)=\frac{1}{2}.\frac{22}{23}=\frac{11}{23}\)
c) \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{2.1}=\frac{1}{99}-\left(\frac{1}{98.99}+\frac{1}{97.98}+...+\frac{1}{1.2}\right)\)
\(=\frac{1}{99}-\left(\frac{1}{98}-\frac{1}{99}+\frac{1}{97}-\frac{1}{98}+...+1-\frac{1}{2}\right)=\frac{1}{99}-\left(-\frac{1}{99}+1\right)=\frac{1}{99}-\frac{98}{99}\)
\(=-\frac{97}{99}\)
d) bạn xem lại đề
a)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2020}-\frac{1}{2021}\)
\(=\frac{1}{1}-\frac{1}{2021}\)
\(=\frac{2020}{2021}\)
b)
\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{21\cdot23}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{23}\right)\)
\(=\frac{1}{2}\cdot\frac{22}{23}\)
\(=\frac{11}{23}\)
c)
\(=\frac{1}{99}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}\right)\)
\(=\frac{1}{99}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\frac{98}{99}\)
\(=\frac{-97}{99}\)
d)
đề sai hay sao á mong bạn xem ljai ạ
\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{2000.1999}-\left(\frac{1}{1999.1998}+\frac{1}{1998.1997}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{3998000}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)
\(=\frac{1}{3998000}-\left(1-\frac{1}{1999}\right)=\frac{1}{3998000}-\frac{1998}{1999}\)
Chỉ nên ghi ra bấy nhiêu. không nên ghi ra đáp án nữa nha bạn ^^ Thầy mình dặn vậy đó ^^
P=(1/2000*1999)-(1/1999*1998)-...-(1/3*2)-(1/2*1)
P=(1/2000*1999)- [(1/1999*1998)+(1/1998*1997)+...+(1/2*1)]
P=(1/2000*1999)-[(1/1999)-(1/1998)+(1/1998)-(1/1997)+...+(1/2)-1]
P=(1/2000*1999)-[(1/1999)+1]
P=(1/3998000)-(2000/1999)
P=( -3999999/3998000
Cách làm :
Áp dụng công thức : \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\)
\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{999.1000}\)
\(\Leftrightarrow C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{999}-\dfrac{1}{1000}\)
\(\Leftrightarrow C=1-\dfrac{1}{1000}\)
\(\Leftrightarrow C=\dfrac{999}{1000}\)
\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+.........+\dfrac{1}{99.101}\)
\(\Leftrightarrow2F=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{99.101}\)
\(\Leftrightarrow2F=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{99}-\dfrac{1}{101}\)
\(\Leftrightarrow2F=1-\dfrac{1}{101}\)
\(\Leftrightarrow2F=\dfrac{100}{101}\)
\(\Leftrightarrow F=\dfrac{50}{101}\)
Giải:
\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)
\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)
\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{1000}\)
\(\Leftrightarrow C=\dfrac{999}{1000}\)
Sửa đề:
\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{999.1001}\)
\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{999}-\dfrac{1}{1001}\right)\)
\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{1001}\right)\)
\(\Leftrightarrow F=\dfrac{1}{2}.\dfrac{1000}{1001}\)
\(\Leftrightarrow F=\dfrac{500}{1001}\)
Chúc bạn học tốt!
\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(P=\frac{1}{1999.2000}-\frac{1}{1998.1999}-...-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=\frac{1}{1999}-\frac{1}{2000}-\frac{1}{1998}+\frac{1}{1999}-\frac{1}{1997}+\frac{1}{1998}-...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(P=\frac{2}{1999}-\frac{1}{2000}-1\)
\(P+\frac{1997}{1999}=\frac{2}{1999}+\frac{1997}{1999}-\frac{1}{2000}-1=1-1-\frac{1}{2000}=-\frac{1}{2000}\)
A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99- 1/100
A= 1 - 1/100
A= 99/100
AXXXXXXXXXXXXXXXXXXXXXXX
ghi xong hết rồi
mạng nó rớt, ấn gửi trả lời mà không biết
tong teo
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Phạm Trần Khánh An : l.i.k.e tiếp cái con khỉ