Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu: 3(a + 2b) - (3a - 4b) = 3a + 6b - 3a + 4b = 10b chia hết cho 5. (1)
Mặt khác: (a + 2b) chia hết cho 5 => 3(a + 2b) cũng chia hết cho 5 (2)
Từ (1) và (2) ta có: (3a - 4b) chia hết cho 5.
Ta có (a+ 2b) chia hết cho 5.
Suy ra a+b+b tận cùng bằng 0,5.
Suy ra 2b = 0 ( số chẵn)
Xét 2TH
TH1 a có tận cùng = 0 suy ra 3a có tận cùng = 0
4b=2b*2 có tận cùng =0 (1)
TH2 a có tận cùng là 5 suy ra 3a có tận cùng = 5
4b=2b*2 có tận cùng =0 (2)
Từ 1 và 2 suy ra nếu (a+2b) chia hết cho 5 thì (3a -4b) chia hết cho 5
2a+3b+3a+2b=5a+5b=5(a+b) chia hết cho 5
Mà 2a+3b chia hết cho 5 nên 3a+2b cũng chia hết cho 5
Ta có : \(a+2b ⋮5\)
=> \(3\left(a+2b\right)⋮5\)
=> \(3a +6b⋮5\)
=> \(\left(3a-4b\right)+10b⋮5\)
=> \(3a-4b⋮5\) ( vì \(10b⋮5\) \(\forall b\in N\)) (đpcm)
Ta có: 3a+2b chia hết cho 17
=>9(3a+2b) chia hết cho 17
=>27a+18b chia hết cho 17
=>(27a-17a)+(18b-17b) chia hết cho 17 (do 17a,17b chia hết cho 17)
=>10a+b chia hết cho 17 (đpcm)
ta có : 10a + 10b : hết cho 5
=> 7a + 3a + 8b + 2b : hết cho 5
=> ( 7a + 8b) + ( 3a + 2b) : hết cho 5
mà 7a + 8b : hết cho 5
=> 3a + 2b : hết cho 5
(7a + 3a)+ (8b+2b)
=> 10a + 10b =>10: 5=2
=>3a + 2b : hết cho 5
Vì 5 là 1 số nguyên tố ⇒ Ít nhất 1 trong 2 số (3a+2b) và(2a+3b) phải chia hết cho 5.
Không mất tính tổng quát, giả sử (3a+2b) ⋮ 5
5(a+b) đương nhiên chia hết cho 5 ⇒5(a+b)-(3a+2b) ⋮ 5
Hay (2a+3b) ⋮ 5
Vậy, nếu (3a+2b)*(2a+3b) ⋮ 5 thì (3a+2b)*(2a+3b) ⋮ 25 (ĐPCM)
Ta có: 3(a + 2b) - (3a - 4b) = 6b + 4b = 10b
mà 10b và a + 2b chia hết cho 5 nên 3.(a + 2b) - 10b chia hết cho 5
=> 3a - 4b chia hết cho 5
a)Ta có: 10n + 18n - 1 = (10n- 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n+ 18n - 1 chia hết cho 27 (đpcm)
giúp mình nhanh nhé
bạn chép sai đề rồi