Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng 1:
a: =>x(x-3)=0
=>x=3 hoặc x=0
b: =>x(3x-4)=0
=>x=4/3 hoặc x=0
c: =>2x-1=0
=>x=1/2
d: =>2x(2x+3)=0
=>x=0 hoặc x=-3/2
e: =>x(2x+5)=0
=>x=-5/2 hoặc x=0
(x^2+4)^2=x^4+8x^2+16
MS=(x^2+4)^2-4x(x^2+4)=(x^2+4)(x^2-4x+4)=(x^2+4)(x-2)^2
ĐK x khác 2
A=(x+2)/(x-2)=1+4/(x-2)
(x-2)= Uocs (4)
hết
1.
a) -5 - (-5) - (-4 - 8)
= -5 + 5 + 12
= 0 + 12
= 12.
Mình chỉ làm bài 1 thôi nhé.
Chúc bạn học tốt!
Câu 2 :
\(a,\left(-x+4\right)\left(x^2+4x+14\right)\)
=> \(-x^3-4x^2-141x+4x^2+16x+564\)
=> \(-x^3-\left(4x^2-4x^2\right)-\left(141x-16x\right)+564\)
=> \(-x^3-125x+564\)
\(b,3x^2\left(-5x+4y\right)+5xy\left(-3+2\right)\)
=> \(-15x^3+12x^2y+5xy.\left(-1\right)\)
=> \(-15x^3+12x^2y-5xy\)
\(c,4xy\left(3x^2-5\right)-3y\left(4x^3-5yx\right)\)
=> \(12x^3y-20xy-3y\left(4x^3-5xy\right)\)
=> \(12x^3y-20xy-12x+15xy^2\)
=> \(\left(12x^3y-12x^3y\right)-20xy+15xy^2\)
=> \(-20xy+15xy^2\)
#~ Hết~#
Bài 1:
a) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(2x^2+5x+3=2x^2+2x+3x+3=2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(2x+3\right)\)
c) \(x^2-10x+16=x^2-2x-8x+16=x\left(x-2\right)-8\left(x-2\right)=\left(x-2\right)\left(x-8\right)\)
d) \(4x^2+9x+5=4x^2+4x+5x+5=4x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(4x+5\right)\)
Bài 2:
không rõ đề --> k lm
a) \(4x^2-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\2x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
b) \(\left(x-1\right)^2=\frac{9}{16}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=\frac{3}{4}\\x-1=-\frac{3}{4}\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7}{4}\\x=\frac{1}{4}\end{array}\right.\)
c) \(\sqrt{x}=4\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow x=16\)
d) \(\sqrt{x+1}=2\left(ĐKx\ge-1\right)\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
chứng minh hộ mình P(x) + Q(x) và P(x) - Q(x) ạ,mình quên ghi ở trên
\(\left(3-4x\right)^2=25=5^2\)
\(\Rightarrow3-4x=5\)
\(\Rightarrow4x=3-5=-2\Rightarrow x=-\frac{1}{2}\)
\(\left(2x-\frac{1}{4}\right)^2=16=4^2\)
\(\Rightarrow2x-\frac{1}{4}=4\Rightarrow2x=4+\frac{1}{4}=\frac{17}{4}\)
\(\Rightarrow x=\frac{17}{4}:2=\frac{17}{4}.\frac{1}{2}=\frac{17}{8}\)
Đề số 3 bị sai.
\(\left(2x+5\right)^2=0\Rightarrow2x+5=0\Rightarrow2x=-5\Rightarrow x=-\frac{5}{2}\)
(3-4x)2=25
3-4x=5
4x=3-5
4x=-2
x=-2:4
x=-0,5
b)(2x-1/42)=16
2x-1/4=4
2x=4+1/4
2x=4,25
x=2,125
c) cái này x ở đâu vậy bn
d) (2x+5)2=0
2x+5=0
2x=0+5
2x=5
x=5:2
x=5/2
Nhớ k cho mk nha
a) A + x2 - 4xy2 + 2xz - 3y2 = 0
=> A = -x2 + 4xy2 - 2xz + 3y2
b) B + 5x2 - 2xy = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2
c) 3xy - 4y2 - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2
Trả lời:
a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0
=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2
b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2
d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2
1, \(x^2-4x-4x+16=0\)
\(\Leftrightarrow x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy.............
2, \(x^2+3x-5x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy...............
3, \(x^2-6x+8=0\)
\(\Leftrightarrow x^2-6x+9-1=0\)
\(\Leftrightarrow\left(x-3\right)^2-1=0\)
\(\Leftrightarrow\left(x-3\right)^3=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy......................
4, \(x^2+8x+12=0\)
\(\Leftrightarrow x^2+8x+16-4=0\)
\(\Leftrightarrow\left(x+4\right)^2-4=0\)
\(\Leftrightarrow\left(x+4\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2\\x+4=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
Vậy............
16 + 4x = 2 ÷ 2
=> 16 + 4x = 1
=> 4x = 1 - 16
=> 4x = -15
=> x = -15/4