Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Ta có:
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(P\left(x\right)=x^5-2x^2+7x^4-9x^3-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
\(Q\left(x\right)=5x^4-x^5-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
c) Ta có:
\(P\left(1\right)=1^5+7.1^4-9.1^3-2.1^2-\frac{1}{4}.1\)
\(P\left(1\right)=-\frac{13}{4}\)
Vậy giá trị của biểu thức P = -13/4 khi x = 1
\(Q\left(0\right)=-0^5+5.0^4-2.0^3+4.0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(Q\left(0\right)=-\frac{1}{4}\)
a) 3x – 6 + x(x – 2) = 0
=> 3x - 6 + x2 - 2x = 0
=> ( 3x - 2x ) - 6 + x2 = 0
=> x - 6 + x2 = 0
=> x2 + x = 6
=> x( x + 1 ) = 2 . 3
=> x = 2
b) 2x(x – 3) – x(x – 6) – 3x = 0
=> 2x2 - 6x - x2 + 6x - 3x = 0
=> ( 2x2 - x2 ) + ( 6x - 6x ) - 3x = 0
=> x2 - 3x = 0
=> x( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x - 3 = 0}\end{cases}\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x = 3}\end{cases}}}\)
a) \(\frac{3x+2}{-4x+5}=-\frac{4}{3}\left(ĐKXĐ:x\ne\frac{5}{4}\right)\)
\(\Rightarrow3\left(3x+2\right)=-4\left(-4x+5\right)\)
\(\Leftrightarrow9x+6=16x-20\)
\(\Leftrightarrow7x=26\)
\(\Leftrightarrow x=\frac{26}{7}\)
b) \(\frac{2\left|x\right|+5}{-4x+3}=-\frac{5}{4}\)(Thôi bài sau tự tìm đkxđ nhá)
\(\Rightarrow8\left|x\right|+20=20x-15\)
\(\Leftrightarrow8\left|x\right|-20x+35\)\(\left(1\right)\)
TH1: Nếu \(x\ge0\)thì \(\left(1\right)\Leftrightarrow8x-20x+35=0\Leftrightarrow x=\frac{35}{12}\left(tm\right)\)
TH2: Nếu \(x< 0\)thì \(\left(1\right)\Leftrightarrow-8x-20x+35=0\Leftrightarrow x=\frac{35}{28}\left(ktm\right)\)
Vậy x=35/12
c)\(\frac{2x+1}{5}=\frac{3}{2x-1}\)
\(\Rightarrow4x^2-1=15\)
\(\Leftrightarrow4x^2=16\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
d)\(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(0,5x+2\right)\)
\(\Leftrightarrow x^2+4x+3=x^2+4,5x+2\)
\(\Leftrightarrow0,5x=1\)
\(\Leftrightarrow x=2\)
e) \(\frac{\left|6x+1\right|}{4}=\frac{2}{4}\)
\(\Leftrightarrow\left|6x+1\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}6x+1=2\\6x+1=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-\frac{1}{2}\end{cases}}}\)
g)\(\frac{\left|3x-5\right|}{3}=\frac{\left|x\right|}{2}\)
\(\Leftrightarrow\frac{\left|3x-5\right|}{\left|x\right|}=\frac{3}{4}\)
\(\Leftrightarrow\left|\frac{3x-5}{x}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3x-5}{x}=\frac{3}{4}\\\frac{3x-5}{x}=-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{20}{9}\\x=\frac{4}{3}\end{cases}}}\)
Mỏi tay quá, xin tý cho sảng khoái nào!!
\(\)
\(P\left(x\right)-Q\left(x\right)=\left(-2x+\frac{1}{2}x^2+3x^4-3x^2-3\right)-\left(3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\right)\\ P\left(x\right)-Q\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3-3x^4-x^3+4x^2-1,5x^3+3x^4-2x-1\\ P\left(x\right)-Q\left(x\right)=\left(-2x-2x\right)+\left(\frac{1}{2}x^2-3x^2+4x^2\right)+\left(3x^4-3x^4+3x^4\right)+\left(-3-1\right)+\left(-x^3-1,5x^3\right)\\ P\left(x\right)-Q\left(x\right)=-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3\)
\(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)+\left(P\left(x\right)-Q\left(x\right)\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\left(\frac{3}{2}x+x^2\right)+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{5}{2}x^2+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)=2x^3-\frac{3}{2}x+1+4x-\frac{5}{2}x^2-3x^4+4+\frac{5}{2}x^3\\ \Rightarrow R\left(x\right)=\left(2x^3+\frac{5}{2}x^3\right)+\left(\frac{-3}{2}x+4x\right)+\left(1+4\right)-\frac{5}{2}x^2-3x^4\\ \Rightarrow R\left(x\right)=\frac{9}{2}x^3+\frac{5}{2}x+5-\frac{5}{2}x^2-3x^4\)
chứng minh hộ mình P(x) + Q(x) và P(x) - Q(x) ạ,mình quên ghi ở trên