Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}....\frac{1}{9x10}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{9}-\frac{1}{10}=\frac{9}{10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
1/1*2+1/2*3+1/3*4+...+1/9*10
=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10
=9/10
nho k cho minh voi nhe
\(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ......... + \(\frac{1}{7.8}\)+ \(\frac{1}{8.9}\)+ \(\frac{1}{9.10}\)
\(=\)\(1\)\(-\)\(\frac{1}{10}\)
\(=\)\(\frac{9}{10}\)
có thể đây là bài lớp 4 nhưng mình nghĩ là các bạn lớp 5 cũng sẽ khó khăn đó
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)+\left(\dfrac{5}{6}+\dfrac{19}{20}+...+\dfrac{2549}{2550}\right)\)
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+..+\dfrac{1}{50\cdot51}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{50\cdot51}\right)\)
\(B=\left(1+1+...+1\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\)
\(B=1\cdot49=49\) (vì có (50 - 2) : 1 + 1 = 49 số hạng 1)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
chúc bn học tốt
\(1,27+2,77+4,27+5,77+...+31,27+32,47\)
\(=\left(1,27+32,77\right)+\left(2,77+31,27\right)+....+\left(16,27+17,77\right)\)
\(=34,04+34,04+....+34,04\)( 11 số hạng)
\(=34,04.11=374,44\)
chúc bn học tốt
Bài 1:
Đặt \(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{18x19}+\frac{2}{19x20}\)
\(\frac{A}{2}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{18x19}+\frac{1}{19x20}\)
\(\frac{A}{2}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{19-18}{18x19}+\frac{20-19}{19x20}\)
\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
\(A=\frac{2x19}{20}=\frac{19}{10}\)
Bài 2:
Đặt \(B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{8x9}+\frac{1}{9x10}\)
Làm tương tự câu 1 có \(B=1-\frac{1}{10}=\frac{9}{10}\)
\(Bx100=\frac{9}{10}x100=90\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=1\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]=\frac{1}{2}\)
=> \(x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}=5\Rightarrow x=5-\frac{206}{100}=\frac{294}{100}=\frac{147}{50}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
a, \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
b, \(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{9.10}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{4}-\dfrac{1}{10}=\dfrac{6}{40}=\dfrac{3}{20}\)
`1/(1xx2)+1/(2xx3)+1/(3xx4) +.... +1/(8xx9) + 1/(9xx10)`
`=1-1/2+1/2-1/3+1/3 - 1/4 + ....... + 1/9 - 1/10`
`=1-1/10`
`=10/10-1/10`
`=9/10`
________________________________
`1/20 + 1/30 + 1/52 + 1/56 + 1/72 + 1/90`
`=1/(4xx5)+1/(5xx6)+......+1/(9xx10)`
`=1/4-1/5+1/5-1/6+.....1/9-1/10`
`=1/4-1/10`
`=3/20`