\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{7...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{5}-\frac{1}{10}\)

\(=\frac{1}{10}\)

b) \(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{998.1000}\)

\(=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{998}-\frac{1}{1000}\)

\(=\frac{1}{10}-\frac{1}{1000}\)

\(=\frac{99}{1000}\)

c) \(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{69.90}\)

\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{89.90}\right)\)

\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{89}-\frac{1}{90}\right)\)

\(=4.\left(1-\frac{1}{90}\right)\)

\(=4.\frac{89}{90}\)

\(=\frac{178}{45}\)

_Chúc bạn học tốt_

25 tháng 5 2018

a, \(=\frac{1}{10}\)

6 tháng 11 2017

\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{8x9}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

=\(1-\frac{1}{9}\)

=\(\frac{8}{9}\)

OK XONG NHỚ CHO MIK NHA

6 tháng 11 2017

\(\frac{1}{1\times2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+.......+\frac{1}{7x8}+\)\(\frac{1}{8x9}\)

=1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{8}-\frac{1}{9}\)

=1-\(\frac{1}{9}\)

=\(\frac{8}{9}\)

29 tháng 9 2018

\(6xy+\left(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{7x8}\right)=\frac{29}{8}\)

Đăt \(A=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{7x8}\)

\(\Rightarrow A=\frac{3-2}{2x3}+\frac{4-3}{3x4}+\frac{5-4}{4x5}+...+\frac{8-7}{7x8}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

\(\Rightarrow6xy+A=6xy+\frac{3}{8}=\frac{29}{8}\Rightarrow6xy=\frac{26}{8}\Rightarrow y=\frac{26}{8x6}\)

9 tháng 9 2017

\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)

\(\Rightarrow5A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow5A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}\right)\)

\(\Rightarrow5A=1-\frac{1}{8}\)

\(\Rightarrow A=\left(1-\frac{1}{8}\right).\frac{1}{5}=\frac{7}{40}\)

9 tháng 9 2017

\(A=\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{7.8}\)

\(A=5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{5}{7.8}\right)\)

\(A=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=5\left(1-\frac{1}{8}\right)\)

\(A=5.\frac{7}{8}\)

\(A=\frac{38}{8}\)

16 tháng 4 2018

A= 5.(1/5.6+1/6.7+...+1/10.11)

A=5.(1/5-1/6+1/6-1/7+.....+1/10-1/11)

A=5.(1/5-1/11)

A=5.6/55=6/11

16 tháng 4 2018

A=6/11<1

A<1

16 tháng 5 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}\)

\(=\frac{2}{5}\)

16 tháng 5 2017

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{9x10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

2 tháng 4 2020

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)

\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}\)

\(=\frac{3}{2\times3}-\frac{2}{2\times3}+\frac{4}{3\times4}-\frac{3}{3\times4}+\frac{5}{4\times5}-\frac{4}{4\times5}+\frac{6}{5\times6}-\frac{5}{5\times6}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{2}-\frac{1}{6}\)

\(=\frac{1}{3}\)

12 tháng 3 2016

A = \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{8x9}\)

A = \(\frac{1}{1}-\frac{1}{9}=\frac{9}{9}-\frac{1}{9}=\frac{8}{9}\)

Mk đầu tiên nha