Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2012+2012 mũ 2 + 2012 mũ 3+.............+2012 mũ 72
A=2012^0+2012^1+2012^2+....+2012^72
2012A=2012^1+2012^2+.....+2012^73
2012A-A=2012^73-1
A=(2012^73-1)/2011<2012^73-1
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2012}}\)
\(\Rightarrow A=1-\frac{1}{2^{2012}}\)
cm \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}< 1\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}\)
\(\frac{1}{2}A-A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(-\frac{1}{2}A=\frac{1}{2^{2013}}-\frac{1}{2}\)
\(\Leftrightarrow A=1-\frac{1}{2^{2012}}< 1\)
\(\RightarrowĐPCM\)
\(M=1+2+2^2+...+2^{2013}\)
\(\Rightarrow2M=2+2^2+2^3+...+2^{2014}\)
\(\Rightarrow2M-M=2^{2014}-1\)
\(\Leftrightarrow M=2^{2014}-1\)
Ta có A=1+2012+20122+...+201272
A.2012=2012+20122+...+201272+201273
A.2012-A=(2012+20122+...+201272+201273)-(1+2012+20122+...+201272)
A.2011=201273-1
A=(201273-1):2011
Vì 201273-1=201273-1 suy ra A<B
\(G=1+2012+2012^2+2012^3+2012^4+...+2012^{71}+2012^{72}\)
\(\Rightarrow G=\dfrac{2012^{72+1}-1}{2012-1}\)
\(\Rightarrow G=\dfrac{2012^{73}-1}{2011}< H=2012^{73}-1\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2012}}\)
\(=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
mà \(A=2A-A\)
=> \(A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(=2-\frac{1}{2^{2012}}\)
\(=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}\)
\(=\frac{2^{2013}-1}{2^{2012}}\)
Easy mà bạn! Mình giải trên máy tính trường nên hơi chậm
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2012^{2012}}\)
\(2A=2+1+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2012}}\)
\(2A-A=A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(=2-\frac{1}{2^{2012}}=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2012}.2-1}{2^{2012}}\)