Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
cho dãy số 2 , 3 ,4,8 ,7,13,11,18 ,... Tìm 3 số tiếp theo của dãy và quy luật của dãy
4 chia hết cho a
8 chia hết cho a
16 không chia hết cho a
11 chia hết cho a
20 chia hết cho a
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
Do các số 11^2, 11^3...11^49 luôn có tận cùng là 1 theo tính chất
Từ 1 và 11 đến 11^49 có tổng cộng 50 số có chữ số tận cùng là 1 nên tổng A sẽ có tận cùng là chữ số tận cùng của tổng 50 chữ số 1 ( khúc này có lẽ hơi khó hiểu tí =))) )
Vì vậy A có tận cùng là 0 nên chia hết cho 5