Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
bạn vô đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
ta co' tinh chat cua luy thua cua 11 nhu sau:
So cuoi cung cua 11^x luon = 1.
Tu` do' ta de dang thay':A= 11^9+11^8+...+11+1 cac so hang deu co so tan cung = 1 va co 10 so hang do do' so' tan cung cua tong?
nay` la` 0. Vay A chia het cho 5.
Ta có:
A = (119 + 118 + 117 + 116 + 115) + (114 +113 + 112 + 11 + 1)
A = Chia hết cho 5 + Chia hết cho 5
=> A chia hết cho 5
giúp với. Mink cho