Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.10}+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{100}\right)+\dfrac{1}{143}=\dfrac{1}{2}.\dfrac{99}{100}+\dfrac{1}{143}=\dfrac{99}{200}+\dfrac{1}{143}=\dfrac{99.143+200.1}{200.143}=\dfrac{14157+200}{28600}=\dfrac{14357}{28600}\)
b) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=14950\)
\(\Rightarrow x+x+...+x+\left(1+2+...+99\right)=14950\)
\(\Rightarrow100x+\left(\left(99+1\right):2\right).99:2=14950\)
\(\Rightarrow100x+2475=14950\Rightarrow100x=12475\Rightarrow x=\dfrac{12475}{100}=\dfrac{499}{4}\)
Ta có:
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99
=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...
<=>16A=3-101/3^99-100/3^100
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16
Suy ra A<3/16
a)Ta có:
\(\left\{{}\begin{matrix}\left|x+3\right|\ge0\\\left|x+9\right|\ge0\\\left|x+5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+3\right|+\left|x+9\right|+\left|x+5\right|\ge0\)
\(\Rightarrow4x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=x+3+x+9+x+5=3x+17=4x\)
\(\Rightarrow17=4x-3x\Rightarrow x=17\)
b)Tương tự câu a, ta chứng minh được \(x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+...+\left|x+98\right|+\left|x+99\right|=x+1+x+2+...+x+98+x+99=99x+4950=100x\)
\(\Rightarrow4950=100x-99x\Rightarrow x=4950\)
c)Ta có:
\(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|=4=\left|x-1+5-x\right|\)
\(\Rightarrow1\le x\le5\Rightarrow x\in\left\{1;2;3;4;5\right\}\)
1.
S = 1 + 3 + 32 + 33 + ... + 399
S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 398 + 399 )
S = 4 + 32 . ( 1 + 3 ) + ... + 398 . ( 1 + 3 )
S = 4 + 32 . 4 + ... + 398 . 4
S = 4 . ( 1 + 32 + ... + 398 ) \(⋮\)4
2.
a) 2x + 7 \(⋮\)x + 2
2x + 4 + 3 \(⋮\)x + 2
Mà 2x + 4 \(⋮\)x + 2
\(\Rightarrow\)3 \(⋮\)x + 2
\(\Rightarrow\)x + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
\(\Rightarrow\)x \(\in\){ -1 ; -3 ; 1 ; -5 }
b) tương tự
a; 1 + 2 + 3 + ... + \(x\) = 5050
Số số hạng của dãy số trên là: (\(x-1\)):1 + 1 = \(x\)
(\(x\) + 1)\(\times\) \(x\): 2 = 5050
(\(x\) + 1) \(\times\) \(x\) = 5050 \(\times\) 2
(\(x+1\)) \(\times\) \(x\) = 10100
(\(x+1\)) \(\times\) \(x\) = 101 \(\times\) 100
Vậy \(x=100\)
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{99}\right)\)
\(A=\frac{1\cdot2\cdot3\cdot....\cdot98}{2\cdot3\cdot4\cdot....\cdot99}\)
\(\Rightarrow A=\frac{1}{99}\)