Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính:
a.(-2/3+3/7) : 4/5 + (-1/3+4/7) : 4/5
b. 5/9 : (1/11-5/22) + 5/9 : (1/15 - 2/3)
Help Me, Please !
a.(-2/3+3/7) : 4/5 + (-1/3+4/7) : 4/5
= [(-2/3 + 3/7) + (-1/3 + 4/7)] : 4/5
= [(-2/3 + (-1/3) + (3/7 + 4/7)] : 4/5
= [-1 + 1] : 4/5
= 0 : 4/5
= 0
a) \(\left(\frac{-2}{3}+\frac{3}{7}\right).\frac{5}{4}+\left(\frac{-1}{3}+\frac{4}{7}\right).\frac{5}{4}\)
=\(\left(\frac{-2}{3}+\frac{-1}{3}+\frac{3}{7}+\frac{4}{7}\right).\frac{5}{4}\)
= \(0.\frac{5}{4}=0\)
b) \(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}+\frac{1}{15}-\frac{2}{3}\right)\)
=\(\frac{5}{9}:\frac{-81}{110}=\frac{-550}{729}\)
\(\frac{1}{9}.\frac{2}{145}-\frac{13}{3}:\frac{1}{145}+\frac{2}{145}=\frac{2}{145}\left(\frac{1}{9}+1\right)-\frac{13}{3}:\frac{1}{145}=\frac{2}{145}.\frac{10}{9}-\frac{1885}{3}=\frac{4}{216}-\frac{1885}{3}\)
\(=-\frac{33929}{54}\)
Ta có:
\(8^9+7^9+6^9+5^9+...+2^9+1^9\)
\(=\left(8^3+7^3+6^3+5^3+...+2^3+1^3\right)^2\)
\(=\left(\left(8+7+6+5+...+2+1\right)^2\right)^2\)
\(=\left(8+7+6+5+...+2+1\right)^4\)
\(=36^4\)
\(=9^4.4^4\)
\(9^{10}=9^4.9^6\)
Vì \(9^4.9^6>9^4.4^4\)
\(\Rightarrow9^{10}>8^9+7^9+6^9+5^9+...+2^9+1^9\)
\(=\dfrac{3^9\cdot3^2}{3^9}\cdot2022=3^2\cdot2022=9\cdot2022=18198\)
a) \(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{72}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{72}=1-1+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(=\dfrac{1}{5}-\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{5}{9}-\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{7}{13}-\dfrac{7}{13}-\dfrac{9}{16}\)
\(=\dfrac{9}{16}\)
Ta có : \(\left(x-\frac{1}{2}\right)^2+\left|y+\frac{1}{3}\right|=0\)
Mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\left|x+\frac{1}{3}\right|\ge0\forall x\)
Nên : \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left|x+\frac{1}{3}\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{3}\end{cases}}\)
(2x+3)\(^2\) = \(\frac{25}{9}\)
=> 2x+3 = \(\frac{5}{3}\)
=> 2x = \(\frac{5}{3}\) - 3
=> 2x = \(-\frac{4}{3}\)
=> x =\(-\frac{2}{3}\)
TH2: (2x+3)\(^2\) =\(\frac{29}{5}\)
=> 2x+3 = \(-\frac{5}{3}\)
=> 2x = \(-\frac{5}{3}\) - 3
=> 2x = \(-\frac{14}{3}\)
=> x = \(-\frac{7}{3}\)
Đặt `A=9^2+9^3+...+9^2021+9^2022`
`=> 9A=9^3+9^4+...+9^2022+9^2023`
`=> 9A-A=(9^3+9^4+...+9^2022+9^2023)-(9^2+9^3+...+9^2021+9^2022)`
`=> 8A=9^2023-9`
`=> A=(9^2023-9)/8`
888888888888X9999999999999