Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng nhận thấy hàm dưới dấu tích phân dương
Đặt \(I=\int\limits^0_{-2}\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}+\int\limits^7_0\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}=A+B\)
Xét \(A=\int\limits^0_{-2}\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}\)
\(f\left(x\right)=\frac{1}{\sqrt{\left(x+2\right)\left(7-x\right)}}\) ; chọn \(g\left(x\right)=\frac{1}{\left(x+2\right)^{\frac{1}{2}}}\)
\(\Rightarrow\lim\limits_{x\rightarrow-2^+}\frac{f\left(x\right)}{g\left(x\right)}=\frac{1}{\sqrt{5}}\) hữu hạn \(\Rightarrow\int\limits^0_{-2}f\left(x\right)dx\) và \(\int\limits^0_{-2}g\left(x\right)dx\) cùng hội tụ hoặc phân kỳ
Mà \(\int\limits^0_{-2}\frac{dx}{\left(x+2\right)^{\frac{1}{2}}}\) có \(\alpha=\frac{1}{2}< 1\) nên hội tụ \(\Rightarrow A\) hội tụ
Tương tự: xét \(B=\int\limits^7_0\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}\)
\(f\left(x\right)=\frac{1}{\sqrt{\left(x+2\right)\left(7-x\right)}}\) chọn \(g\left(x\right)=\frac{1}{\left(7-x\right)^{\frac{1}{2}}}\Rightarrow\lim\limits_{x\rightarrow7^-}\frac{f\left(x\right)}{g\left(x\right)}=\frac{1}{3}\) hữu hạn
\(\Rightarrow\int\limits^7_0f\left(x\right)dx\) và \(\int\limits^7_0g\left(x\right)dx\) cùng bản chất
\(\alpha=\frac{1}{2}< 1\Rightarrow\int\limits^7_0g\left(x\right)dx\) hội tụ \(\Rightarrow B\) hội tụ
\(\Rightarrow I=A+B\) hội tụ
Tìm theo pp Lagrange bị 1 điểm cực trị có \(B^2-AC=0\) ko kết luận được, do đó nên đưa về cực trị của hàm 1 biến
\(\left(x+2\right)^2+\left(y+2\right)^2=98\Leftrightarrow\left(\frac{x+2}{7\sqrt{2}}\right)^2+\left(\frac{y+2}{7\sqrt{2}}\right)^2=1\)
Đặt \(\left\{{}\begin{matrix}\frac{x+2}{7\sqrt{2}}=sint\\\frac{y+2}{7\sqrt{2}}=cost\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\sqrt{2}sint-2\\y=7\sqrt{2}cost-2\end{matrix}\right.\)
\(\Rightarrow z=98sint.cost+35\sqrt{2}\left(sint+cost\right)-24\)
Đặt \(\sqrt{2}\left(sint+cost\right)=a\Rightarrow-2\le a\le2\)
\(\Rightarrow sint.cost=\frac{a^2}{4}-\frac{1}{2}\)
\(\Rightarrow z=\frac{49}{2}a^2+35a-73\) với \(a\in\left[-2;2\right]\)
\(z'_a=49a+35=0\Rightarrow a=-\frac{5}{7}\)
\(z\left(-2\right)=-45;z\left(2\right)=95;z\left(-\frac{5}{7}\right)=-\frac{171}{2}\)
\(\Rightarrow z_{min}=-\frac{171}{2}\) khi \(a=-\frac{5}{7}\) ; \(z_{max}=95\) khi \(a=2\)