Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)
a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)
Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)
\(\Rightarrow9x^2dx=-6udu\)
\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)
b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)
\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)
c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)
\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)
d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)
\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)
\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)
e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)
\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)
f/ \(I=\int cosx.sin^3xdx\)
Đặt \(u=sinx\Rightarrow du=cosxdx\)
\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)
Lời giải:
Câu 1:
\(5^{2x}=3^{2x}+2.5^x+2.3^x\)
\(\Leftrightarrow 5^{2x}-2.5^x+1=3^{2x}+2.3^x+1\)
\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)
\(\Leftrightarrow (5^x-1-3^x-1)(5^x-1+3^x+1)=0\)
\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)
Vì \(3^x,5^x>0\Rightarrow 3^x+5^x>0\), do đó từ pt trên ta có \(5^x-3^x=2\)
\(\Leftrightarrow 5^x=3^x+2\)
TH1: \(x>1\)
\(\Rightarrow 5^x=3^x+2< 3^x+2^x\)
\(\Leftrightarrow 1< \left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)
Vì bản thân \(\frac{2}{5},\frac{3}{5}<1\), và \(x>1\Rightarrow \left(\frac{2}{5}\right)^x< \frac{2}{5};\left(\frac{3}{5}\right)^x<\frac{3}{5}\)
\(\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x< 1\) (vô lý)
TH2: \(x<1 \Rightarrow 5^x=3^x+2> 3^x+2^x\)
\(\Leftrightarrow 1>\left(\frac{3}{5}\right)^x+\left(\frac{2}{5}\right)^x\)
Vì \(\frac{2}{5};\frac{3}{5}<1; x<1\Rightarrow \left(\frac{3}{5}\right)^x> \frac{3}{5}; \left(\frac{2}{5}\right)^x>\frac{2}{5}\Rightarrow \left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x>1\)
(vô lý)
Vậy \(x=1\)
Câu 2:
Ta có \(1+6.2^x+3.5^x=10^x\)
\(\Leftrightarrow \frac{1}{10^x}+6.\frac{1}{5^x}+3.\frac{1}{2^x}=1\)
\(\Leftrightarrow 10^{-x}+6.5^{-x}+3.2^{-x}=1\)
Ta thấy, đạo hàm vế trái là một giá trị âm, vế phải là hàm hằng có đạo hàm bằng 0, do đó pt có nghiệm duy nhất.
Thấy \(x=2\) thỏa mãn nên nghiệm duy nhất của pt là x=2
Câu 3:
\(6(\sqrt{5}+1)^x-2(\sqrt{5}-1)^x=2^{x+2}\)
Đặt \(\sqrt{5}+1=a\), khi đó sử dụng định lý Viete đảo ta duy ra a là nghiệm của phương trình \(a^2-2a-4=0\)
Mặt khác, từ pt ban đầu suy ra \(6.a^x-2\left(\frac{4}{a}\right)^x=2^{x+2}\)
\(\Leftrightarrow 6.a^{2x}-2^{x+2}a^x-2^{2x+1}=0\)
\(\Leftrightarrow 2(a^x-2^x)^2+4(a^{2x}-2^{2x})=0\)
\(\Leftrightarrow 2(a^x-2^x)^2+4(a^x-2^x)(a^x+2^x)=0\)
\(\Leftrightarrow (a^x-2^x)(6a^x+2^{x+1})=0\)
Dễ thấy \(6a^x+2^{x+1}>0\forall x\in\mathbb{R}\Rightarrow a^x-2^x=0\)
\(\Leftrightarrow (\sqrt{5}+1)^x=2^x\Leftrightarrow x=0\)
\(y=\left(x^2+x+m\right)^2=\left[\left(x+\frac{1}{2}\right)^2+m-\frac{1}{4}\right]^2\)
Đặt \(x+\frac{1}{2}=t\Rightarrow-\frac{3}{2}\le t\le\frac{5}{2}\) và \(\frac{1}{4}-m=n\)
\(\Rightarrow y=f\left(t\right)=\left(t^2-n\right)^2=t^4-2nt^2+n^2\)
Hàm trùng phương nên đồ thị đối xứng qua \(t=0\)
\(f'\left(t\right)=4t\left(t^2-n\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t^2=n\end{matrix}\right.\)
- Nếu \(n\le0\Rightarrow f'\left(t\right)=0\) có nghiệm duy nhất \(t=0\)
\(\Rightarrow f\left(t\right)_{min}=f\left(0\right)=n^2=4\Rightarrow n=-2\Rightarrow m=\frac{9}{4}\)
- Nếu \(n>0\) ta chỉ cần quan tâm 2 nghiệm \(\left[{}\begin{matrix}t=\sqrt{n}\\t=-\sqrt{n}\end{matrix}\right.\) do \(t=0\) là cực đại nên min ko thể xảy ra tại đây
+TH1: \(n>\frac{25}{4}\Rightarrow f\left(t\right)_{min}=f\left(\frac{5}{2}\right)=\left(n-\frac{25}{4}\right)^2=4\)
\(\Rightarrow n=\frac{33}{4}\Rightarrow m=-8\)
+ TH2: \(0\le n\le\frac{25}{4}\Rightarrow f\left(t\right)_{min}=0\ne4\) (ktm)
Vậy \(\left[{}\begin{matrix}m=\frac{9}{4}\\m=-8\end{matrix}\right.\) \(\Rightarrow B\)
Cho mình hỏi là sao mình tìm khoảng giá trị của x2+x xong rồi tìm giá trị min trên đoạn [-2;2] thì sẽ ra
(m-\(\frac{1}{4}\))2=4 thì lại không được nhỉ ??
\(y'=\frac{5\left(x^2+4\right)-2x.5x}{\left(x^2+4\right)}f'\left(\frac{5x}{x^2+4}\right)=\frac{5\left(4-x^2\right)}{x^2+4}f'\left(\frac{5x}{x^2+4}\right)\)
\(=\frac{5\left(2-x\right)\left(2+x\right)}{\left(x^2+4\right)}.\left(\frac{5x}{x^2+4}\right)^2.\left(\frac{5x}{x^2+4}-1\right)\left(\frac{65x}{x^2+4}-15\right)^3\)
\(=\frac{5\left(2-x\right)\left(2+x\right).25x^2\left(x-4\right)\left(1-x\right)\left(x-3\right)^3\left(4-3x\right)^3.5^3}{\left(x^2+4\right)^7}\)
Ta thấy \(y'=0\) có 7 nghiệm nhưng nghiệm \(x=0\) có mũ chẵn nên hàm số có 6 điểm cực trị
\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)
Tương tự cho các số còn lại rồi cộng vào sẽ được
\(S\le\dfrac{3}{2}\)
Dấu "=" khi a=b=c=1
Vậy
\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)
\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)
Cmtt rồi cộng vào ta đc đpcm
Dấu "=" khi x = y = z = 1/3
ta có X =log(9,23/2)
TỪ ĐÓ THẤY X VÀO BIỂU THỨC THÌ TA RA ĐC ĐÁP ÁN .