Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn nhập pt vào máy tính rồi nhấn shift slove = ,sẽ ra nghiệm là 0,5 .lấy 0,5 thể vào căn thức rồi nhân liên hợp là ok
Đáp án C
có tâm I(4;3;3) bán kính R =4
Gọi phương trình đường thẳng d có dạng
Khoảng cách từ tâm I đến d là
Ta có
Khi đó
\(g'\left(x\right)=\left(2x-8\right)f'\left(x^2-8x+m\right)\)
Ta không cần quan tâm tới nhân tử \(\left(x-1\right)^2\) ở \(f'\left(x\right)\) vì đó là biểu thức mũ chẵn nên ko làm \(f'\left(x\right)\) đổi dấu khi đi qua \(x=1\)
\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}2x-8=0\Rightarrow x=4\\\left(x^2-8x+m\right)^2-2\left(x^2-8x+m\right)=0\left(1\right)\end{matrix}\right.\)
Để hàm số đồng biến trên \(\left(4;+\infty\right)\Rightarrow\left(1\right)\) vô nghiệm hoặc tất cả các nghiệm của (1) đều không lớn hơn 4
\(\left(1\right)\Leftrightarrow\left(x^2-8x+m\right)\left(x^2-8x+m-2\right)=0\)
TH1: \(16-m+2\le0\Rightarrow m\ge18\)
TH2: Nhận thấy 2 pt \(\left\{{}\begin{matrix}x^2-8x+m=0\\x^2-8m+m-2=0\end{matrix}\right.\)
Đều có trung bình cộng hai nghiệm \(\frac{x_1+x_2}{2}=4\Rightarrow\) nếu 2 pt này có nghiệm thì luôn có ít nhất 1 nghiệm lớn hơn 4 \(\Rightarrow\) ko thỏa mãn
Vậy \(m\ge18\) \(\Rightarrow\) có \(99-18+1=82\) giá trị nguyên của m
Đặt \(log_2\left(\frac{8x-2^x-12m}{3}\right)=t\)
\(\Rightarrow8x-2^x-12m=3.2^t\)
Ta được hệ: \(\left\{{}\begin{matrix}3t-2^x-x=3m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12t-4.2^x-4x=12m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)
\(\Rightarrow12t-3.2^x-12x+3.2^t=0\)
\(\Leftrightarrow3.2^t+12t=3.2^x+12x\)
Hàm \(f\left(a\right)=3.2^a+12a\) đồng biến trên R nên đẳng thức xảy ra khi và chỉ khi \(x=t\)
\(\Rightarrow3x-2^x-x=3m\)
\(\Leftrightarrow2x-2^x=3m\)
Khảo sát hàm \(f\left(x\right)=2x-2^x\Rightarrow f'\left(x\right)=2-2^x.ln2=0\)
\(\Rightarrow2^x=\frac{2}{ln2}\Rightarrow x=log_2\left(\frac{2}{ln2}\right)=1-log_2\left(ln2\right)\)
Từ BBT ta thấy để pt có đúng 2 nghiệm thực pb
\(\Leftrightarrow3m< f\left(1-log_2\left(ln2\right)\right)\Rightarrow m\le0\) do m nguyên
Có 20 giá trị nguyên của m
Ta có \(x-\sqrt{x^2+4}\ne0\) và \(y-\sqrt{y^2+1}\ne0\)
Nhân 2 vế của pt đầu cho \(x-\sqrt{x^2+4}\) ta được:
\(x-\sqrt{x^2+4}=-2\left(y+\sqrt{y^2+1}\right)\) (1)
Nhân 2 vế của pt đầu cho \(y-\sqrt{y^2+1}\) ta được:
\(x+\sqrt{x^2+4}=-2\left(y-\sqrt{y^2+1}\right)\) (2)
Cộng vế với vế của (1) và (2) ta được: \(2x=-4y\Rightarrow x=-2y\)
Biến đổi pt dưới 1 chút:
\(3\left(-2y\right)^2+5\left(-2y\right)+2=2\sqrt[3]{x^3+1}\)
\(\Leftrightarrow3x^2+5x+2=2\sqrt[3]{x^3+1}\)
\(\Leftrightarrow x^3+3x^2+3x+1+2\left(x+1\right)=x^3+1+2\sqrt[3]{x^3+1}\)
\(\Leftrightarrow\left(x+1\right)^3+2\left(x+1\right)=\left(\sqrt[3]{x^3+1}\right)^3+2\sqrt[3]{x^3+1}\)
Xét hàm \(f\left(t\right)=t^3+2t\), ta có \(f'\left(t\right)=3t^2+2>0\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow x+1=\sqrt[3]{x^3+1}\Leftrightarrow\left(x+1\right)^3=x^3+1\)
\(\Leftrightarrow x^3+3x^2+3x+1=x^3+1\Leftrightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x=-1\Rightarrow y=\dfrac{1}{2}\end{matrix}\right.\)
=>8x=18-10y
=>x=(18-10y)/8