Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :
\(\log_2x+\log_3x+\log_4x=\log_{20}x\)
\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)
\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)
\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)
Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)
Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)
Vậy nghiệm duy nhất của phương trình là \(x=1\)
c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :
\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\log_5x=1\)
\(\Leftrightarrow x=5^1=5\) thỏa mãn
Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)
\(\overrightarrow{OA}=\left(1;0;-1\right)\) ; \(\overrightarrow{OB}=\left(1;-1;2\right)\)
\(\Rightarrow S_{OAB}=\dfrac{1}{2}\left|\left[\overrightarrow{OA};\overrightarrow{OB}\right]\right|=\dfrac{\sqrt{11}}{2}\)
ĐKXĐ: \(-6\le x\le11\)
\(\left(x-2\right)^2-64+\sqrt{x+6}-4+1-\sqrt{11-x}=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)+\dfrac{x-10}{\sqrt{x+6}+4}+\dfrac{x-10}{1+\sqrt{11-x}}=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6+\dfrac{1}{\sqrt{x+6}+4}+\dfrac{1}{1+\sqrt{11-x}}\right)=0\)
\(\Leftrightarrow x=10\)
bạn nhập pt vào máy tính rồi nhấn shift slove = ,sẽ ra nghiệm là 0,5 .lấy 0,5 thể vào căn thức rồi nhân liên hợp là ok