Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : 2469 : 2 = 1234 ( dư 1 ) ; 6487 : 3 = 2162 ( dư 1 ) ; 4159:5=811(dư 4) Bài 2 : 3224 : 4 =806 ; 2819 : 7 = 402 ( dư 5 ) ; 1516 : 3 = 505 ( dư 1 ) ; 1865 : 6 = 310 ( dư 5 ) Bài 3 x=301 ; x= 205 ; x=307
Ta có :x-52=904
x=904+52
x=956
Ta có :y*6-y=20*5
y*5=100
y=100:5
y=20
Vậy x+y=956+20=976
ví dụ:
100 + 2 + 2 = 100 + ( 2 x 2 )
= 100 + 4
= 104.
thấy đúng thì tk nha
x + 2617 x 5 = 22219
x + 2617 = 22219 : 5
x + 2617 = 4443,8
x = 4443,8 - 2617
x = 1826,8
( x - 9587 ) : 8 = 1415
( x - 9587 ) = 1415 x 8
( x - 9587 ) = 11320
x = 11320 + 9587
x = 20907
x + 2617x 5 = 22219
x + 2617 = 22219 : 5
x + 2617 = 4443,8
x = 4443,8 - 2617
x = 1826,8
( x - 9587) : 8 = 1415
( x - 9587 ) = 1415 x 8
( x - 9587 ) = 11320
x = 11320 + 9587
x = 20907
Chúc bạn học tốt!
C1: \(\left(\frac{3}{5}+\frac{4}{9}\right)\cdot\frac{3}{8}=\frac{47}{45}\cdot\frac{3}{8}=\frac{141}{360}=\frac{47}{120}\)
C2: \(\left(\frac{3}{5}+\frac{4}{9}\right)\cdot\frac{3}{8}=\frac{3}{5}\cdot\frac{3}{8}+\frac{4}{9}\cdot\frac{3}{8}=\frac{9}{40}+\frac{12}{72}=\frac{47}{120}\)
chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)
ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)
\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)
chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)
áp dụng bất đẳng thức Cauchy ta có:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)
ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)
kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
y =1640:8
y =205