K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)

31 tháng 1 2015

1.3+3.5+5.7+...+(2n+1).(2n+3)=(2n+1).(2n+2).(2n+3).(2n+4)

31 tháng 1 2015

(2n+2)(2n+2)(2n+3)(2n+4):12]+(n+1)

16 tháng 6 2016

\(I=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)

\(\Rightarrow I=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right).\left(2n+3\right)}\right)\)

\(\Rightarrow I=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)

\(\Rightarrow I=\frac{1}{2}\left(1-\frac{1}{2n+3}\right)\)

\(\Rightarrow I=\frac{1}{2}.\frac{2n+2}{2n+3}\)

\(\Rightarrow I=\frac{n+1}{2n+3}\)

16 tháng 6 2016

\(I=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right)\left(2n+3\right)}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}=\frac{1}{1}-\frac{1}{2n+3}\)

\(=\frac{2n+3}{2n+3}-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)

16 tháng 1 2016

a) \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}+\frac{3}{418}+\frac{3}{550}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+\frac{3}{19.22}+\frac{3}{22.25}\)

\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+\frac{1}{19}-\frac{1}{22}+\frac{1}{22}-\frac{1}{25}\)

\(\frac{1}{1}-\frac{1}{25}\)

\(\frac{24}{25}\)

b) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right).\left(2n+3\right)}\)

\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)

\(\frac{1}{1}-\frac{1}{2n+3}\)

\(\frac{2n+2}{2n+3}\)

c) \(\frac{7+\frac{7}{13}-\frac{7}{48}+\frac{7}{95}}{15+\frac{15}{13}-\frac{15}{48}+\frac{15}{95}}-\frac{7070707}{15151515}\)

\(\frac{7\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}{15\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}-\frac{7.1010101}{15.1010101}\)

\(\frac{7}{15}-\frac{7}{15}\)

= 0

16 tháng 1 2016

a) 24/25

b) (2n+2)/(2n+3)

c) 0

sai thì thôi nhé

27 tháng 3 2018

\(P=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\\ 2P=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n+1}-\dfrac{1}{2n+3}\\ =1-\dfrac{1}{2n+3}\\ =\dfrac{2\left(n+1\right)}{2n+3}\\ P=\dfrac{2\left(n+1\right)}{2n+3}:2\\ =\dfrac{n+1}{2n+3}\)

27 tháng 3 2018

thanks nha