Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài nhìn vô muốn xỉu rồi ='((
1. a) \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)
\(=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}+\frac{3}{94.97}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{97}\right)=\frac{2}{3}.\frac{96}{97}=\frac{64}{97}\)
b) Bạn tự làm, làm nữa chắc xỉu =((( Khi nào rảnh mình sẽ làm, nếu bạn cần
2 )
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:2=\frac{1005}{4022}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{1005}{4022}=\frac{3017}{4020+2}\)
\(\Rightarrow x=4020\)
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
S = \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+\frac{5}{7.9}+.......+\frac{5}{17.19}\)
S : 5 = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{17.19}\)
S : 5 = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}+.......+\frac{1}{17}-\frac{1}{19}\)
=> S : 5 = 1 - \(\frac{1}{19}=\frac{19}{19}-\frac{1}{19}=\frac{18}{19}\)
=> S = \(\frac{18}{19}x5=\frac{90}{19}\)
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
\(A=\frac{12}{3.5}+\frac{12}{5.7}+...+\frac{12}{2013.2015}\)
\(2A=\frac{24}{3.5}+\frac{24}{5.7}+...+\frac{24}{2013.2015}\)
\(2A=\frac{24}{3}-\frac{24}{5}+\frac{24}{5}-\frac{24}{7}+...+\frac{24}{2013}-\frac{24}{2015}\)
\(2A=8-\frac{24}{2015}\)
\(2A=\frac{8}{1}-\frac{24}{2015}\)
\(2A=\frac{16120}{2015}-\frac{24}{2015}\)
\(2A=\frac{16096}{2015}\)
\(=>A=\frac{16096}{2015}:2\)
\(=>A=\frac{16096}{4030}\)
a) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=5.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right):2\)
\(=5.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right):2\)
\(=5.\left(1-\frac{1}{101}\right):2=5.\frac{100}{101}:2=\frac{500}{101}.\frac{1}{2}\)\(=\frac{250}{101}\)
b) \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=3\left(\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\right)\)\(.\frac{1}{3}\)
\(=(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{30.33}).\frac{1}{3}\)
\(=(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}).\frac{1}{3}\)
\(=(\frac{1}{3}-\frac{1}{33}).\frac{1}{3}=\frac{10}{33}.\frac{1}{3}=\frac{10}{99}\)
a/
S = 1-2+3-4+5-6+...+2001-2002+2003
= [-1] +[-1] +...+[-1] +2003
------------------------
1001 số -1
= -1001 +2003 = 1002
b/
A = \(6.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)=6.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)=6.\left(\frac{1}{3}-\frac{1}{2015}\right)=\frac{6.2012}{6045}=\frac{4024}{2015}\)