Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
-2 (x+6)+6 (x-10)=8
-2x -12 +6x -60 =8
4x -72 =8
4x = -64
x= -16
b.
7x (2+x) -7x (x+3) =14
7x [ (2+x)-(x+3) ] =14
7x (2+x-x-3) =14
-7x =14
x= -2
a, => 2^x = (2^3)^4/(2^4)^3 = 2^12/2^12 = 1 = 2^0
=> x = 0
c, => 4^x = 4^10.(4-3) = 4^10
=> x=10
d, => 2^2.3^x-1 + 2.3^x.9 = 2^2.3^6+2.3^9
=> 2.3^x-1 . (2+3.9) = 2.3^6.(2+3^3)
=> 2.3^x-1 . 27 = 2.3^6 . 27
=> 3^x-1 = 3^6
=> x-1 = 6
=> x = 7
e, => 2^x.(1/3+1/6+2) = 2^11.(2+1/2)
=> 2^x. 5/2 = 2^11. 5/2
=> 2^x = 2^11
=> x = 11
Tk mk nha
tự giải đi em bài này học sinh trường chị biết giải hết đó:v
Xét \(x+y=x.y\left(1\right)\)
Ta có: \(x=x.y-y=y.\left(x-1\right)=>\frac{x}{y}=x-1\)
Lại có \(x+y=\frac{x}{y}\)
\(=>x+y=x-1=\frac{x}{y}=>x+y=x-1=>y=-1\)
Thay y=-1 vào (1),ta được:
\(x-1=x.\left(-1\right)=>x-1=-x=>2x=1=>x=\frac{1}{2}\)
Vậy x=1/2;y=-1
a, Đặt A=3x+7x−1.
Ta có: A=3x+7x−1=3x−3+10x−1=3x−3x−1+10x−1=3+10x−1
Để A∈Z thì 10x−1∈Z⇒10⋮x−1⇔x−1∈U(10)={±1;±2;±5;±10}
Ta có bảng sau:
x−1 | 1 | −1 | 2 | −2 | 5 | −5 | 10 | −10 |
x | 2 | 0 | 3 | −1 | 6 | −4 | 11 | −9 |
Vậy, với x∈{−9;−4;−1;0;2;3;6;11}thì A=3x+7x−1∈Z.
Đúng 4 Bình luận 2 Câu trả lời được H lựa chọn Báo cáo sai phạm
Nguyễn Huy Tú4 tháng 5 2017 lúc 19:45
Câu 3:
a, Ta có: −(x+1)2008≤0
⇒P=2010−(x+1)2008≤2010
Dấu " = " khi (x+1)2008=0⇒x+1=0⇒x=−1
Vậy MAXP=2010 khi x = -1
b, Ta có: −|3−x|≤0
⇒Q=1010−|3−x|≤1010
Dấu " = " khi |3−x|=0⇒x=3
Vậy MAXQ=1010 khi x = 3
c, Vì (x−3)2+1≥0 nên để C lớn nhất thì (x−3)2+1 nhỏ nhất
Ta có: (x−3)2≥0⇒(x−3)2+1≥1
⇒C=5(x−3)2+1≤51=5
Dấu " = " khi (x−3)2=0⇒x=3
Vậy MAXC=5 khi x = 3
d, Do |x−2|+2≥0 nên để D lớn nhất thì |x−2|+2 nhỏ nhất
Ta có: |x−2|≥0⇒|x−2|+2≥2
⇒D=4|x−2|+2≤42=2
Dấu " = " khi |x−2|=0⇒x=2
Vậy MAXD=2 khi x = 2
Đúng 3 Bình luận Câu trả lời được H lựa chọn Báo cáo sai phạm
\(f\left(100\right)\Rightarrow x=100\)
\(\Rightarrow x+1=101\)
Thay x + 1 = 101 ta được:
\(f\left(100\right)-x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+...+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(=x^8-\left(x^8+x^7\right)+\left(x^7+x^6\right)-\left(x^6+x^5\right)+...+\left(x^3+x^2\right)-\left(x^2+x\right)+25\)
\(=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...+x^3+x^2-x^2-x+25\)
\(=-x+25\)
\(=-100+25\)
\(=-75\)
Ta thấy x=1 không thoả mãn.
Nếu x=2 thì ta có bộ ba số Pytago \(\left(6;8;10\right)\)
Xét \(x\ge3\), không có giá trị nào của x thoả mãn phương trình theo định lý Fermat lớn , chứng minh năm 1995.
Vậy \(x=2\)
Ta có: \(6^x+8^x=10^x\)
\(\Leftrightarrow\left(\frac{6}{10}\right)^x+\left(\frac{8}{10}\right)^x=\left(\frac{10}{10}\right)^x\)
\(\Leftrightarrow\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)
Xét x = 1 => \(\left(\frac{3}{5}\right)^1+\left(\frac{4}{5}\right)^1=\frac{7}{5}\left(ktm\right)\) => loại
Xét x = 2 => \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=\frac{9}{25}+\frac{16}{25}=\frac{25}{25}=1\left(tm\right)\)
Vậy x = 2
Xét \(x\ge3\) => \(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x< \left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\) => loại
Vậy x = 2 là nghiệm duy nhất của PT