Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-1\right|+2018\)
ta có :
\(\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-1\right|+2018\ge0+2018\)
\(\Rightarrow\left|x-1\right|+2018\ge2018\)
dấu "=" xảy ra khi :
\(\left|x-1\right|=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
vậy MinA = 2018 khi x = 1
Bạn nào thông minh giải cả 3 câu hộ mình luôn nha. mk đang cần gấp các bạn ơi
a ) -2/3 - x = 0,45 b) 1/3 - x( 7/12 +2) = 5/6
=> x = -2/3 -0,45 => 1/3 - x . 31/12 = 5/6
=> x = -67/60 => 31/12x = 1/3 - 5/6
vậy x = -67/60 => 31/12x = - 1/2
=> x = -1/2 : 31/12
=> x = -6/31 vậy x = -6/31
c) 2 2/3x + 8 2/3 = 2 1/3 d) 3/7 ( x+1) = 4/7
=> 8/3x + 26/3 = 7/3 => x+1 = 4/7 : 3/7
=> 8/3x = 7/3 -26/3 => x+1 = 4/3
=> 8/3x = -19/3 => x = 4/3 - 1
=> x = -19/3 : 8/3 = -19/8 => x = 1/3
vậy x= -19/8 vậy x = 1/3
e)1/3x + 2/5 ( x+1 ) =6 f) x/126 = -5/9 . 4/7
=>1/3x + 2/5x +2/5 = 6 => x/126 = -20/ 63
=> (1/3 + 2/5)x = 6 - 2/5 => x = -20/63 . 126
=>11/15x = 28/5 => x = -40
=> x= 28/5 : 11/15 vậy x= -40
=> x = 84/11
vậy x= 84/11
CHÚC BẠN HOK TỐT
a. Vì \(\left|3x-2\right|\ge0\forall x\)
\(\Rightarrow2\left|3x-2\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow2\left|3x-2\right|=0\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy Amin = - 1 <=> x = 2/3
b. Vì \(\left|x-4x\right|\ge0\forall x\)
\(\Rightarrow5\left|1-4x\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow5\left|1-4x\right|=0\Leftrightarrow1-4x=0\Leftrightarrow x=\frac{1}{4}\)
Vậy Bmin = - 1 <=> x = 1/4
c. Vì \(x^2\ge0\forall x;\left|y-2\right|\ge0\forall y\)
\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy Cmin = - 1 <=> x = 0 ; y = 2
d. Vì \(\left|x\right|\ge0\forall x\)\(\Rightarrow x+\left|x\right|\ge0\forall x\)
Dấu "=" xảy ra <=> x bé hơn hoặc bằng 0
Vậy Dmin = 0 <=> x bé hơn hoặc bằng 0
e.
+) Nếu x > hoặc bằng 7
=> E = | x - 7 | + 6 - x = x - 7 + 6 - x = -1
Vậy x > hoặc bằng 7 thì E có một giá trị duy nhất là -1
+) Nếu 0 < x < 7
=> E = | x - 7 | + 6 - x = - x + 7 + 6 - x = - 2x + 13 ( nhỏ nhất bằng 1 <=> x = 6 )
+) Nếu x bé hơn hoặc bằng 0
=> E = | x - 7 | + 6 - x = - x + 7 + 6 + x = 13
Vậy Emin = -1 <=> x lớn hơn hoặc bằng 7
a,\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\) (1)
<=> \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)
<=> \(\left(x+1\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)
=> x+1=0 (vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\ne0\))
<=> x=-1
Vậy pt (1) có tập nghiệm S\(=\left\{-1\right\}\)
b, \(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)(2)
<=> \(\frac{x+6}{2015}+1+\frac{x+5}{2016}+1+\frac{x+4}{2017}+1=\frac{x+3}{2018}+1+\frac{x+2}{2019}+1+\frac{x+1}{2020}+1\)
<=> \(\frac{x+2021}{2015}+\frac{x+2021}{2016}+\frac{x+2021}{2017}-\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)
<=> \(\left(x+2021\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
=> x+2021=0(vì \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x=-2021
Vậy pt (2) có tập nghiệm S=\(\left\{-2021\right\}\)
c,\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\) (3)
<=> \(\frac{x+6}{2016}-1+\frac{x+7}{2017}-1+\frac{x+8}{2018}-1=\frac{x+9}{2019}-1+\frac{x+10}{2020}-1+1-1\)
<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}=\frac{x-2010}{2019}+\frac{x-2010}{2020}\)
<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}-\frac{x-2010}{2019}-\frac{x-2010}{2020}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
=> x-2010=0 (vì \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x=2010
Vậy pt (3) có tập nghiệm S=\(\left\{2010\right\}\)
d, \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\) (4)
<=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=15-1-2-3-4-5\)
<=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
<=> (x-100)(\(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\))=0
=> x -100=0(vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\))
<=> x=100
Vậy pt (4) có tập nghiệm S=\(\left\{100\right\}\)
a) \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)
\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)
\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=0-1\)
\(\Rightarrow x=-1\)
Vậy \(x=-1.\)
Mình chỉ làm câu a) thôi nhé.
Chúc bạn học tốt!
Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:
a. x2 - 2xy + 2y2 + 2y +1
= (x2 - 2xy + y2) +( y 2 + 2y +1)
= (x-y)2 + (y+1)2
b. 4x2 - 12x - y2 + 2y + 8
= (4x2 - 12x + 9 ) - (y2 - 2y +1 )
= (2x-3)2 - (y-1)2
\(\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\)
\(\Rightarrow A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)
\(\Rightarrow A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2\right|=2\)
dấu "="xảy ra khi \(\left(2x-1\right).\left(3-2x\right)\ge0\)
\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{2}\)
vậy min A=2 khi \(\frac{1}{2}\le x\le\frac{3}{2}\)
Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0
áp dụng vào từng câu
a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I
A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6
Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3
b) LÀm tương tự MinB=18
Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2
a, Đặt A=3x+7x−1.
Ta có: A=3x+7x−1=3x−3+10x−1=3x−3x−1+10x−1=3+10x−1
Để A∈Z thì 10x−1∈Z⇒10⋮x−1⇔x−1∈U(10)={±1;±2;±5;±10}
Ta có bảng sau:
Vậy, với x∈{−9;−4;−1;0;2;3;6;11}thì A=3x+7x−1∈Z.
Đúng 4 Bình luận 2 Câu trả lời được H lựa chọn Báo cáo sai phạm
Nguyễn Huy Tú4 tháng 5 2017 lúc 19:45
Câu 3:
a, Ta có: −(x+1)2008≤0
⇒P=2010−(x+1)2008≤2010
Dấu " = " khi (x+1)2008=0⇒x+1=0⇒x=−1
Vậy MAXP=2010 khi x = -1
b, Ta có: −|3−x|≤0
⇒Q=1010−|3−x|≤1010
Dấu " = " khi |3−x|=0⇒x=3
Vậy MAXQ=1010 khi x = 3
c, Vì (x−3)2+1≥0 nên để C lớn nhất thì (x−3)2+1 nhỏ nhất
Ta có: (x−3)2≥0⇒(x−3)2+1≥1
⇒C=5(x−3)2+1≤51=5
Dấu " = " khi (x−3)2=0⇒x=3
Vậy MAXC=5 khi x = 3
d, Do |x−2|+2≥0 nên để D lớn nhất thì |x−2|+2 nhỏ nhất
Ta có: |x−2|≥0⇒|x−2|+2≥2
⇒D=4|x−2|+2≤42=2
Dấu " = " khi |x−2|=0⇒x=2
Vậy MAXD=2 khi x = 2
Đúng 3 Bình luận Câu trả lời được H lựa chọn Báo cáo sai phạm
sai de roi ban oi