Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
=-36
b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)
\(=y^4-y^4+1\)
=1
Bài 2:
a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)
\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)
\(=2a^2-b^2\)
b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=6b^2-7ab\)
c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)
\(=3b^2-7xb+2x^2\)
\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)
Vì a ≠ ± 3/2 nên 4 a 2 - 9 ≠ 0
Vì a ≠ - 1 nên 3 a 3 + 3 ≠ 0
Do đó:
a) Thu gọn M = - 5 a 2 từ đó tính được M = -125.
b) Gợi ý 15 = x + 1; 16 = x + 2; 29 = 2x + 1; 13 = x – 1.
Rút gọn N = -x, từ đó tính được N = -14.
Biến đổi ta được: m = 7 ( a + 1 ) ( 2 a − 5 ) ( 2 a + 5 ) ; n = 3 a ( 2 a + 5 ) 5 ( a 3 + 1 )
⇒ A = mn = 21 a ( 2 a − 5 ) ( a 2 − a + 1 )
\(Sửa:6x^2+x-2=6x^2-3x+4x-2=\left(2x-1\right)\left(3x+2\right)\)