
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(=\left(x^2-4\right)\left(x^2+4\right)-x^2+3\)
\(=x^4-16-x^2+3\)
\(=x^4-x^2-13\)
b: \(=x^3-6x^2+12x-8-x^3-1+6x^2-12x+6\)
\(=-3\)
c: \(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2-b^3-6a^2b\)
\(=2b^2\)

a) \(\left(a+6\right)\left(a^2-6a+36\right)\)
\(=a^3-6a^2+36a+6a^2-36a+216\)
\(=a^3-216\)
b) \(\left(x^2-1\right)\left(x^4+x^2+1\right)\)
\(=x^6+x^4+x^2-x^4-x^2-1\)
\(=x^6-1\)

Chắc câu a là \(2a^2\) ...
\(A=\left(a^2+b^2+2ab-4a-4b+4\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+4014\)
\(A=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+4014\ge4014\)
\(A_{min}=4014\) khi \(a=b=1\)
\(B=\left(x^2-7x\right)\left(x^2-7x+12\right)=\left(x^2-7x\right)^2+12\left(x^2-7x\right)\)
\(B=\left(x^2-7x+6\right)^2-36\ge-36\)
\(B_{min}=-36\) khi \(\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\)

a) \(6a^2b^2c-4ab^2c^2+12a^2bc^2\)
\(=2abc\left(3ab-2bc+6ac\right)\)
b)\(x^2\left(x-y\right)-y\left(y-x\right)\)
\(=x^2\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+y\right)\)

Bài 4:
\(b,\dfrac{\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}}{1+\dfrac{x^3}{1-x^3}}\)
\(=\dfrac{\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}}{\dfrac{1-x^3}{1-x^3}+\dfrac{x^3}{1-x^3}}\)
\(=\dfrac{\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}}{\dfrac{1-x^3+x^3}{1-x^3}}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{1}{\left(1-x\right)\left(1+x+x^2\right)}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{-1}{\left(x-1\right)\left(1+x+x^2\right)}\)
\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}.\left[-\left(x-1\right)\left(x^2+x+1\right)\right]\)
\(=\dfrac{-4x\left(x^2+x+1\right)}{x+1}\)

Áp dụng HĐT thôi bạn =)
a) ( a + b )2 + ( a - b )2 - 6a2b
= a2 + 2ab + b2 + a2 - 2ab + b2 - 6a2b
= 2a2 + 2b2 - 6a2b
= 2( a2 + b2 - 3a2b )
b) ( a + 3 )3 - ( a - b )3 - 6a2b
=( a3 + 3a2b + 3ab2 + b3 ) - ( a3 - 3a2b + 3ab2 - b3 ) - 6a2b
= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3 - 6a2b
= 2b3

\(25\left(x-3\right)^2-\left(2x-7\right)^2\)(*)
Đặt \(x-3=t\)và \(2x-7=z\)thay vào (*) ta được:
\(25t^2-z^2\)
\(=\left(5t-z\right)\left(5t+z\right)\)thay t=x-3 và y=2x-7 ta được:
\(=\left(5x-15-2x+7\right)\left(5x-15+2x-7\right)\)
\(=\left(3x-8\right)\left(7x-22\right)\)
C2 nhân ra rồi phân tích
\(25\left(x-3\right)^2-\left(2x-7\right)^2\)
\(=5^2.\left(x-3\right)^2-\left(2x-7\right)^2\)
\(=\left[5.\left(x-3\right)\right]^2-\left(2x-7\right)^2\)
\(=\left[5\left(x-3\right)-\left(2x-7\right)\right]\left[5\left(x-3\right)+\left(2x-7\right)\right]\)
\(=\left(5x-15-2x+7\right)\left(5x-15+2x-7\right)\)
\(=\left(3x-8\right)\left(7x-22\right)\)
\(Sửa:6x^2+x-2=6x^2-3x+4x-2=\left(2x-1\right)\left(3x+2\right)\)