K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

vậy có cần phải làm lại hong hi`? :b

NV
18 tháng 6 2019

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow2\left(x^2+x+1\right)+3\left(x-1\right)-7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a\\\sqrt{x-1}=b\end{matrix}\right.\)

\(\Rightarrow2a^2+3b^2-7ab=0\)

\(\Leftrightarrow\left(a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=3\sqrt{x-1}\\2\sqrt{x^2+x+1}=\sqrt{x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=9\left(x-1\right)\\4\left(x^2+x+1\right)=x-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
18 tháng 6 2019

b/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)

Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)

\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\)

Phương trình trở thành:

\(a+a^2-2=0\Leftrightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)

\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)

\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)

\(\Leftrightarrow\sqrt{x-2}=0\)

1 tháng 8 2019

ko biết làm

bye 

đi đây

4 tháng 4 2022

\(a,\)

\(=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+3x}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

Vậy \(P=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)

\(b,\)Thay \(P=\dfrac{6}{5}\) vào pt, ta có :

\(\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}=\dfrac{6}{5}\)

\(\Leftrightarrow5\left(3\sqrt{x}+1\right)=6\left(3\sqrt{x}-1\right)\)

\(\Leftrightarrow15\sqrt{x}+5-18\sqrt{x}+6=0\)

\(\Leftrightarrow-3\sqrt{x}+11=0\)

\(\Leftrightarrow-3\sqrt{x}=-11\)

\(\Leftrightarrow\sqrt{x}=\dfrac{11}{3}\)

\(\Leftrightarrow x=\left(\dfrac{11}{3}\right)^2\)

\(\Leftrightarrow x=\dfrac{121}{9}\)

Vậy \(x=\dfrac{121}{9}\) thì \(P=\dfrac{6}{5}\)

 

 

a) Bạn tự giải

b) Ta có: \(\Delta'=m^2-5\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{5}\\m< -\sqrt{5}\end{matrix}\right.\)

 Vậy ...

a) Thay m=2 vào pt, ta được:

\(x^2-2\left(2-1\right)x-2\cdot2+6=0\)

\(\Leftrightarrow x^2-2x+2=0\)

\(\Leftrightarrow x^2-2x+1+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+1=0\)(Vô lý)

Vậy: Khi m=2 thì phương trình vô nghiệm

b) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-2m+6\right)\)

\(=\left(2m-2\right)^2-4\left(-2m+6\right)\)

\(=4m^2-8m+4+8m-24\)

\(=4m^2-20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow4m^2-20>0\)

\(\Leftrightarrow4m^2>20\)

\(\Leftrightarrow m^2>5\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -\sqrt{5}\\m>\sqrt{5}\end{matrix}\right.\)