Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Lời giải:
Đặt $\sqrt[3]{x+1}=a;\sqrt[3]{x-1}=b$ thì pt trở thành:
\(\left\{\begin{matrix} a^2+b^2+ab=1\\ a^3-b^3=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ (a-b)(a^2+ab+b^2)=2\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ a-b=2\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} (a-b)^2+3ab=1\\ a-b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(-b)=1\\ a+(-b)=2\end{matrix}\right.\)
Theo đl Viet đảo thì $a,-b$ là nghiệm của pt $X^2-2X+1=0$
$\Rightarrow a=-b=1$
$\Leftrightarrow \sqrt[3]{x+1}=1; \sqrt[3]{x-1}=-1$
$\Rightarrow x=0$
Vậy.........
Dk: x\(\ge0\)
lien hop
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)
Nếu bạn thiếu số 2 bên cạnh $\sqrt{2x^2+5x+3}$ thì có thể tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/tim-x-sao-cho-sqrt2x3sqrtx13x2sqrt2x25x3-16.235781793134
ĐKXĐ: \(x^3-1\ge0\Rightarrow\left(x-1\right)\left(x^2+x+1\right)\ge0\)
mà \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(2x^2+5x-1=7\sqrt{x^3-1}\Leftrightarrow2x^2+2x+2+3x-3=7\sqrt{x-1}\sqrt{x^2+x+1}\)
\(\Leftrightarrow2\left(x^2+x+1\right)+3\left(x-1\right)=7\sqrt{x-1}\sqrt{x^2+x+1}\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\\b=\sqrt{x^2+x+1}\end{matrix}\right.\left(a,b\ge0\right)\)
\(\Rightarrow\) pt trở thành \(2b^2+3a^2=7ab\Rightarrow2b^2-7ab+3a^2=0\)
\(\Rightarrow2b^2-6ab-ab+3a^2=0\Rightarrow2b\left(b-3a\right)-a\left(b-3a\right)=0\)
\(\Rightarrow\left(b-3a\right)\left(2b-a\right)=0\Rightarrow\left[{}\begin{matrix}b=3a\\2b=a\end{matrix}\right.\)
\(TH_1:b=3a\Rightarrow\sqrt{x^2+x+1}=3\sqrt{x-1}\)
\(\Rightarrow x^2+x+1=9\left(x-1\right)\Rightarrow x^2-8x+10=0\)
\(\Delta=\left(-8\right)^2-4.10=24\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{8-\sqrt{24}}{2}=4-\sqrt{6}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{8+\sqrt{24}}{2}=4+\sqrt{6}\end{matrix}\right.\)
\(TH_2:2b=a\Rightarrow2\sqrt{x^2+x+1}=\sqrt{x-1}\)
\(\Rightarrow4\left(x^2+x+1\right)=x-1\Rightarrow4x^2+3x+5=0\)
mà \(4x^2+3x+5=\left(2x\right)^2+2.2x.\dfrac{3}{4}+\left(\dfrac{3}{4}\right)^2+\dfrac{71}{16}=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{71}{16}>0\)
\(\Rightarrow\) loại
Vậy pt có tập nghiệm \(S=\left\{4+\sqrt{6};4-\sqrt{6}\right\}\)
a) \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)
\(\Leftrightarrow x^2.2+3.2-\sqrt{2x^2-3x+2}.3=\frac{3}{2}\left(x+1\right).2\)
\(\Leftrightarrow2x^2+6-\sqrt{2x^2-3x+2}=3\left(x+1\right)\)
\(\Leftrightarrow2x^2+6-2\sqrt{2x^2-3x+2}=3x+3\)
\(\Leftrightarrow-2\sqrt{2x^2-3x+2}+6=3x^2+3-2x^2\)
\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=3x+3-2x^2-6\)
\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=-2x^3+3x-3\)
\(\Leftrightarrow\left(-2\sqrt{2x^2-3x+2}\right)^2=\left(-2x^2+3x-3\right)^2\)
\(\Leftrightarrow8x^2-12x+8=4x^4-12x^3+21x^2-18x+9\)
\(\Leftrightarrow4x^2-12x^3+12x^2-6x+1=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: nghiệm phương trình là \(\left\{1;\frac{1}{2}\right\}\)
b) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Xét \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)
\(=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=\left|1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(3-\sqrt{x-1}\right)\ge0\Leftrightarrow5\le x\le10\)
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow2\left(x^2+x+1\right)+3\left(x-1\right)-7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a\\\sqrt{x-1}=b\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2-7ab=0\)
\(\Leftrightarrow\left(a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=3\sqrt{x-1}\\2\sqrt{x^2+x+1}=\sqrt{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=9\left(x-1\right)\\4\left(x^2+x+1\right)=x-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\)
Phương trình trở thành:
\(a+a^2-2=0\Leftrightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)
\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)
\(\Leftrightarrow\sqrt{x-2}=0\)