Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.
>>Sau đó giải bt.
2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.
Pt:2a+5b^2+14ab=0(tự giải nha)
DK\(x\ge\sqrt[3]{2}\)
\(pt\Leftrightarrow\sqrt[3]{x^2-1}-2+x-3-\left(\sqrt{x^3-2}-5\right)=0\)
\(\Leftrightarrow\frac{x^2-9}{\sqrt[3]{x^2-1}+2}+x-3-\frac{x^3-27}{\sqrt{x^3-2}+5}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x+3}{\sqrt[3]{x^2-1}+2}+1-\frac{x^2+3x+9}{\sqrt{x^3-2}+5}\right)=0\)
\(\Leftrightarrow x=3\)
Vay...
mk lm đến đấy r còn phần đánh giá bên trong biểu thức nx cơ
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
\(\sqrt{x-1}+x^2-1=0\)DK: \(x\ge1\)\(\Leftrightarrow\sqrt{x-1}\left[1+\left(x+1\right)\sqrt{x-1}\right]=0\Leftrightarrow\)
*\(\sqrt{x-1}=0=>x=1\)
*\(1+\left(x+1\right)\sqrt{x-1}=0\Leftrightarrow vonghiem\)
KL: x=1
b)
\(\sqrt{x^2+3}=!x^2+1!\) đặt x^2+1=t=> t>=1
\(\sqrt{t+2}=t\Leftrightarrow t^2-t-2=0=>t=-1\left(hoacloai\right)\&t=2\)
=>\(x=+-1\)
c)
\(x^3+4=4x\sqrt{x}\) dk x>=0
\(x^3+4=4\sqrt{x^3}\) \(Dat..\sqrt{x^3}=t=>t\ge0\)
t^2+4=4t<=>t^2-4t+4=0=> t=2=> x=\(\sqrt[3]{4}\)
nếu bạn muốn minh trả lời tiếp hay gui link truc tiep den minh.
xem bài và kiểm tra lại số liệu rất có thể sai lỗi số học.
sao không thấy ai giải/
thấy có loi roi vào copy pass linh tinh
@hieu nguyen Em có nhân chéo hai vế và khai triển ra nhưng cũng không ra cái gì ạ.
đk: \(x\ge0\)
Ta có: \(\sqrt{x}+2\sqrt{x+3}=x+4\)
\(\Leftrightarrow\left(x+3\right)-2\sqrt{x+3}+1=\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=\sqrt{x}-1\)
\(\Leftrightarrow\left|\sqrt{x-3}-1\right|=\sqrt{x}-1\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}-1=\sqrt{x}-1\\\sqrt{x-3}-1=1-\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=\sqrt{x}\left(ktm\right)\\\sqrt{x-3}+\sqrt{x}=2\end{cases}}\)
\(\Leftrightarrow x-3+x+2\sqrt{x\left(x-3\right)}=4\)
\(\Leftrightarrow2\sqrt{x^2-3x}=7-2x\)
\(\Leftrightarrow4\left(x^2-3x\right)=\left(7-2x\right)^2\)
\(\Leftrightarrow4x^2-12x=49-28x+4x^2\)
\(\Leftrightarrow16x=49\)
\(\Rightarrow x=\frac{49}{16}\)
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
hình như đề bài sai..mk thấy vế trái của cả 2 pt nó chả khác j nhau cả
ko biết làm
bye
đi đây