giúp e câu 55,56,57,58,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Câu 55)

Ta có tọa độ các điểm là:\(M(1,5),N(3,-1),P(6,0)\)

\(\Rightarrow MN=2\sqrt{10};MP=5\sqrt{2};NP=\sqrt{10}\)

Nhận thấy \(MN^2+NP^2=MP^2\) nên tam giác tạo bởi ba điểm là tam giác vuông.

Đáp án C

Câu 56)

Đặt \(z=a+bi(a,b\in\mathbb{R})\)

Khi đó

\(|z+2-3i|=|\overline{z}-4+i|\Leftrightarrow |(a+2)+i(b-3)|=|(a-4)+i(1-b)|\)

\(\Leftrightarrow (a+2)^2+(b-3)^2=(a-4)^2+(b-1)^2\)

\(\Leftrightarrow 3a-b-1=0\)

Đáp án A

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Câu 57:

Câu này thử thôi:

Biết tọa độ \(A(1,3),B(-2,2),C(-4,-2),D(1,-7),M(-3,4),N(1,-3),P(-3,2)\)

Tọa độ trọng tâm:

\(G(ABC)=\left(\frac{1-2-4}{3},\frac{3+2-2}{3}\right)=(\frac{-5}{3},1)=\left(\frac{-3+1-3}{3},\frac{4-3+2}{3}\right)=G(MNP)\)

nên A đúng

Nhìn trên mp tọa độ thì C đúng

Tính được độ dài các cạnh \(AB,MN,BC,NP\)

Tam giác $ABC$ và $MNP$ đồng dạng thì \(\frac{AB}{MN}=\frac{BC}{NP}\). Dựa vào độ dài vừa tính ta suy ra \(\frac{AB}{MN}\neq \frac{BC}{NP}\)

nên đáp án B sai

15 tháng 3 2017

Câu 31 thử ĐA

Câu 33: có công thức

Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d

\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D

15 tháng 3 2017

Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Câu 22)

Bạn dùng nguyên hàm từng phần thôi

Ta có \(I=\int x(1-x)e^{-x}dx=(ax^2+bx+c)e^{-x}\)

Đặt \(\left\{\begin{matrix} u=1-x\\ dv=xe^{-x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-dx\\ v=\int xe^{-x}dx\end{matrix}\right.\)

Tại $v$ cũng áp dụng nguyên hàm từng phần, suy a \(v=-xe^{-x}-e^{-x}\)

Do đó \(I=(-xe^{-x}-e^{-x})(1-x)-\int (x+1)e^{-x}dx\)

\(I=(x^2-1)e^{-x}-v-\int e^{-x}dx\)

\(I=(x^2-1)e^{-x}-(-xe^{-x}-e^{-x})-(-e^{-x})\)

\(I=e^{-x}(x^2+x+1)+c\)

Do đó \(a=b=c=1\rightarrow a+b+c=3\)

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Câu 23:

Câu này y hệt như câu 22. Bạn chỉ cần tìm $a,b,c$ sao cho

\(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(ax^2+bx+c)\sqrt{2x-3}\)

Gợi ý: Đặt \(\sqrt{2x-3}=t\), ta sẽ tìm được \(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(4x^2-2x+1)\sqrt{2x-3}\)

\(\Rightarrow a=4,b=-2,c=1\). Đáp án C

Câu 25:

Đạo hàm của $f(x)=\frac{1}{2x-1}$ thì nghĩa là \(f(x)=\int\frac{1}{2x-1}dx\)

\(\Leftrightarrow f(x)=\frac{1}{2}\int\frac{d(2x-1)}{2x-1}=\frac{1}{2}\ln|2x-1|+c\)

\(f(1)=1\leftrightarrow c=1\). Do đó \(f(x)=\frac{1}{2}\ln|2x-1|+1\rightarrow f(5)=\frac{1}{2}\ln 9+1=\ln 3+1\)

Đáp án D

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Câu 9)

\(F'(x)=3x^2+2x+1\Rightarrow F(x)=\int (3x^2+2x+1)dx\)

\(\Rightarrow F(x)=x^3+x^2+x+t\) với $t$ là một hằng số nào đó

Vì đồ thị \(y=F(x)\) cắt trục tung tại $c$ nên $c=y=t$

Do đó \(F(x)=x^3+x^2+x+c\)

Phương án D

Câu 10)

Theo đề bài có \(\int f(2x-3)d(2x-3)=F(2x-3)+c\)

\(\Leftrightarrow 2\int f(2x-3)dx=F(2x-3)+c\Rightarrow \int f(2x-3)dx=\frac{F(2x-3)}{2}+c\)

Đáp án C

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Lời giải:

Bài 16

Khai triển:

\(F(x)=\int \frac{(x-1)^3}{2x^2}dx=\int \frac{x^3-3x^2+3x-1}{2x^2}dx=\int \frac{x}{2}dx-\int\frac{3}{2}dx+\int\frac{3}{2x}dx-\int\frac{dx}{2x^2}\)

Cụ thể có:

\(\int \frac{x}{2}dx=\frac{x^2}{4};\int\frac{3}{2}dx=\frac{3x}{2};\int\frac{3dx}{2x}=\frac{3}{2}\ln|x|;\int\frac{dx}{2x^2}=-\frac{1}{2x}\)

Do đó \(F(x)=\frac{x^2}{4}-\frac{3x}{2}+\frac{3\ln|x|}{2}+\frac{1}{2x}+c\)

Phương án D.

Bài 18:

\(\int f(x)dx=\sin 2x\cos 2x\Rightarrow f(x)=(\sin 2x\cos 2x)'\)

\(\Leftrightarrow f(x)=(\frac{\sin 4x}{2})'=2\cos 4x\)

(không có đáp án đúng?)

Câu 36

Đặt \(\left\{\begin{matrix} u=\ln (\ln x)\\ dv=\frac{dx}{x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{1}{x\ln x}dx\\ v=\int\frac{dx}{x}=\ln x\end{matrix}\right.\)

Khi đó \(I=\ln x\ln(\ln x)-\int\ln x\frac{1}{x\ln x}dx=\ln x\ln(\ lnx)-\int\frac{dx}{x}=\ln x\ln (\ln x)-\ln x+c\)

Đáp án C

4 tháng 7 2016

nhờ người ta giải mà cười hihi

em thì bó tay chấm chữ com vào ăn

4 tháng 7 2016

TXĐ: D=R

\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)

\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)

Đặt t = \(3^{x^2+x-1}\)      (t>0)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)

 

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Câu 69:

Ta có:

\(f(x)+f(y)=1\Leftrightarrow \frac{9^x}{9^x+m^2}+\frac{9^y}{9^y+m^2}=1\)

\(\Leftrightarrow \frac{9^x}{9^x+m^2}=1-\frac{9^y}{9^y+m^2}=\frac{m^2}{9^y+m^2}\)

\(\Leftrightarrow 9^{x+y}=m^4\Leftrightarrow (3^{x+y}-m^2)(3^{x+y}+m^2)=0\)

\(\Rightarrow 3^{x+y}=m^2\) (do \(3^{x+y}>0; m^2\geq 0\Rightarrow 3^{x+y}+m^2>0\) ) (1)

------------------------------------------------

Tiếp theo: \(e^{x+y}\leq e(x+y)\Leftrightarrow e^{x+y-1}\leq x+y\)

Đặt \(x+y=k\Rightarrow e^{k-1}\leq k\Leftrightarrow e^{k-1}-k\leq 0\)

Đặt \(e^{k-1}-k=f(k)\Rightarrow f(k)\leq 0(*)\)

Có: \(f'(k)=e^{k-1}-1=0\Leftrightarrow k=1\)

Lập bảng biến thiên ta thấy rằng \(f(k)_{\min}=f(1)=0\) hay \(f(k)\geq 0(**)\)

Từ \((1);(2)\Rightarrow f(k)=0\) hay \(k=1\Leftrightarrow x+y=1\)

Thay vào (1) ta có \(m^2=3\Leftrightarrow m=\pm \sqrt{3}\)

Vậy có 2 giá trị m thỏa mãn. đáp án D

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Câu 70:

Để hai pt lần lượt có hai nghiệm phân biệt thì

\(\Delta _1=\Delta_2=b^2-20a>0\Leftrightarrow b^2> 20a\) (1)

Khi đó, áp dụng hệ thức Viete ta có:

Đối với PT 1: \(\ln x_1+\ln x_2=\frac{-b}{a}\Leftrightarrow \ln (x_1x_2)=\frac{-b}{a}\)

\(\Leftrightarrow x_1x_2=e^{\frac{-b}{a}}\)

Đối với PT 2: \(\log x_1+\log x_2=\frac{-b}{5}\Leftrightarrow \log (x_1x_2)=\frac{-b}{5}\)

\(\Leftrightarrow x_3x_4=10^{\frac{-b}{5}}\)

\(x_1x_2> x_3x_4\Leftrightarrow e^{\frac{-b}{a}}>10^{\frac{-b}{5}}\)

\(\Leftrightarrow 10^{\frac{-b}{a\ln 10}}> 10^{\frac{-b}{5}}\)

\(\Leftrightarrow \frac{-b}{a\ln 10}>\frac{-b}{5}\Leftrightarrow a>\frac{5}{\ln 10}\)

\(\Leftrightarrow a> 2,71...\Rightarrow a\geq 3\) (vì a nguyên dương)

Theo (1) ta có: \(b^2>20a\geq 60\Rightarrow b\geq 8\) (do b nguyên dương)

Vậy \(2a+3b\geq 2.3+3.8\Leftrightarrow 2a+3b\geq 30\)

Đáp án A

 

Câu 17: B

8 tháng 3 2017

47. y=x ĐA: D

48. A(-4;0); B(0;4); C(x; 3)

\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{BC}=\left(x;-1\right)\)

A;B;C thẳng hàng\(\Rightarrow\dfrac{4}{x}=\dfrac{4}{-1}=>x=-1\) ĐA: D

49.A(2;-2); B(3;1); C(0;2)

\(\overrightarrow{AB}=\left(1;3\right);\overrightarrow{AC}=\left(-2;4\right);\overrightarrow{BC}\left(-3;1\right)\)

=>Tam giác vuông cân=> ĐA:C

51. ĐA:D

52: A(-1;3); B(-3;-2); C(4;1)

\(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(5,-2\right),\overrightarrow{BC}=\left(7;3\right)\)

ĐA: C

8 tháng 3 2017

điền bừa đi

31 tháng 8 2016

bài không khó nhưng không hiểu là tìm m để pt có nghiệm hay sao??