Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đoạn thẳng AB bằng 6cm, trên tia AB lấy điểm C sao cho AC bằng 4cm.
a) Trong ba điểm A, B , C điểm nào nằm giữa hai điểm còn lại? Vì sao?
a) 4 chia hết cho x
=> x \(\in\) Ư(4) = {1;-1;2;-2;4;-4}
Vậy x \(\in\) {1;-1;2;-2;4;-4}
b) 6 chia hết x+1
=> x+1 \(\in\) Ư(6) = {-1;1;2;-2;3;-3;6;-6}
Vậy x \(\in\) {-2;0;1;-3;2;-4;5;-7}
c) 12 chia hết cho x và 16 chia hết cho x
=> x \(\in\) ƯC(12;16) = {1;2;4}
Vậy x \(\in\) {1;2;4}
d) x chia hết cho 6 và x chia hết cho 4
=> x \(\in\) BC(6;4) = {0;12;24;48;...}
Mà 12<x<40 => x = 24
e) x+5 chia hết cho x+1
=> x+1+4 chia hết cho x+1
=> 4 chia hết cho x+1
=> x+1 \(\in\) Ư(4) = {1;-1;2;-2;4;-4}
Vậy x \(\in\) {0;-2;1;-3;3;-5}
b) \(6⋮x+1\)
\(\Rightarrow x+1\inƯ\left(6\right)\)
hay \(x+1\in\left\{1,2,3,6\right\}\)
Vậy \(x\in\left\{0,1,2,5\right\}\)
a, \(x\) + 6 ⋮ \(x\) đkxđ \(x\) \(\ne\) 0
⇔ 6 ⋮ \(x\)
\(x\) \(\in\) {1; 2; 3; 6}
b, \(x\) + 9 \(⋮\) \(x\) + 1 đkxđ \(x\) \(\ne\) -1
\(x\) + 1 + 8 ⋮ \(x\) + 1
8 \(⋮\) \(x\) + 1
\(x\) + 1 \(\in\) Ư(8) = { 1; 2; 4; 8}
\(x\) \(\in\) { 0; 1; 3; 7}
c, 2\(x\) + 1 ⋮ \(x\) - 1 đkxđ \(x\) \(\ne\) 1
2\(x\) - 2 + 3 ⋮ \(x\) -1
2.(\(x\) - 1) + 3 \(⋮\) \(x\) - 1
\(x\) - 1 \(\in\)Ư(3) = { 1; 3}
\(x\) \(\in\) { 2; 4}
a) Xem lại đề!
b) Ta có:
x + 9 = x + 1 + 8
Để (x + 9) ⋮ (x + 1) thì 8 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
⇒ x ∈ {-9; -5; -3; -2; 0; 1; 3; 7}
Mà x ∈ ℕ
⇒ x ∈ {0; 1; 3; 7}
c) Ta có:
2x + 1 = 2x - 2 + 3 = 2(x - 1) + 3
Để (2x + 1) ⋮ (x - 1) thì 3 ⋮ (x - 1)
⇒ x - 1 ∈ Ư{3} = {-3; -1; 1; 3}
⇒ x ∈ {-2; 0; 2; 4}
Mà x ∈ ℕ
⇒ x ∈ {0; 2; 4}
Vì x⋮6;x⋮24;x⋮40
→xϵ BC[6;24;40]
TA CÓ:
6=2.3
24=23.3
40=23.5
→BCNN[6;24;40]=23.3.5=60
BC[6;24;40]=B[60]={1;2;3;4;5;6;10;12;15;20;30;60}
hay x ϵ {1;2;3;4;5;6;10;12;15;20;30;60}
CÂU SAU TRÌNH BÀY NHƯ THẾ NHƯNG LÀ ƯỚC THÔI !
a; \(x\) + 6 ⋮ \(x\) + 1 (\(x\) ≠ - 1)
\(x\) + 1 + 5 ⋮ \(x\) + 1
\(x\) + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
\(x\) \(\in\) {-6; -2; 0; 4}
\(x\) + 6 ⋮ \(x\) + (-1) (\(x\) ≠ 1)
\(x\) + - 1 + 7 ⋮ \(x\) - 1
7 ⋮ \(x\) - 1
\(x\) - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
\(x\) \(\in\) {-6; 0; 2; 8}
b; \(x\) + 6 ⋮ \(x\) - 2 (đk \(x\) ≠ 2)
\(x\) - 2 + 8 ⋮ \(x\) - 2
8 ⋮ \(x\) - 2
\(x\) - 2 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
\(x\) \(\in\) {-6; -2; 0; 1; 3; 4; 10}
\(x\) + 6 ⋮ \(x\) + (-2)
\(x\) + 6 ⋮ \(x\) - 2
giống với ý trên