Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
a/\(5x^2+10xy+5y^2\)
\(=5x^2+5xy+5xy+5y^2\)
\(=\left(5x^2+5xy\right)+\left(5xy+5y^2\right)\)
\(=5x\left(x+y\right)+5y\left(x+y\right)\)
\(=\left(x+y\right)\left(5x+5y\right)\)
\(=5\left(x+y\right)\left(x+y\right)=5\left(x+y\right)^2\)
2/ \(6x^2+12xy+6y^2\)
\(=6\left(x^2+2xy+y^2\right)\)
\(=6\left(x+y\right)^2\)
3/\(2x^3+4x^2y+4x^3y^4\)
\(=2x^2\left(x+2y+2xy^4\right)\)
a) \(\dfrac{3x-2}{2xy}+\dfrac{7x+2}{2xy}\)
\(=\dfrac{\left(3x-2\right)+\left(7x+2\right)}{2xy}\)
\(=\dfrac{3x-2+7x+2}{2xy}\)
\(=\dfrac{10x}{2xy}\)
\(=\dfrac{5}{y}\)
b) \(\dfrac{5x+y^2}{x^2y}+\dfrac{x^2-5y}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}+\dfrac{x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)+x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3+x^3-5xy}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
c) \(\dfrac{3x-2}{2xy}-\dfrac{7x-y}{2xy}\)
\(=\dfrac{\left(3x-2\right)-\left(7x-y\right)}{2xy}\)
\(=\dfrac{3x-2-7x+y}{2xy}\)
\(=\dfrac{-2-4x+y}{2xy}\)
d) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}-\dfrac{x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
e) \(\dfrac{16xy}{3x-1}.\dfrac{3-9x}{12xy^3}\)
\(=\dfrac{16xy\left(3-9x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{4\left(3-9x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4\left(9x-3\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4.3\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-12}{3y^2}\)
\(=\dfrac{-4}{y^2}\)
f) \(\dfrac{8xy}{3x-1}:\dfrac{12xy^3}{5-15x}\)
\(=\dfrac{8xy}{3x-1}.\dfrac{5-15x}{12xy^3}\)
\(=\dfrac{8xy\left(5-15x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{2\left(5-15x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2\left(15x-5\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2.5\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-10}{3y^2}\)
\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x\)
Thay x=15 \(\Rightarrow A=9.15=135\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)
\(=19x^2y^2-11xy^3-8x^3\)
Thay x=1/2 ; y=2 vào B \(\Rightarrow19.\left(\frac{1}{2}\right)^2.2^2-11\cdot\frac{1}{2}\cdot2^3-8\cdot\left(\frac{1}{2}\right)^3\)
\(=19-44-1\)
\(=-26\)
\(\frac{5x+y^2}{x^2y}-\frac{5y-x^2}{xy^2}\)
\(=\frac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)
\(=\frac{5xy+y^3-5xy+x^3}{x^2y^2}\)
\(=\frac{x^3+y^3}{x^2y^2}\)
\(a,x^2-5x-xy+5y\)
\(=x\cdot\left(x-y\right)-5\cdot\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(x-5\right)\)
\(b,x^3+6x^2+9x\)
\(=x\cdot\left(x^2+6x+9\right)\)
\(=x\cdot\left(x+3\right)^2\)
\(c,x^2+x-2\)
\(=x^2-x+2x-2\)
\(=x\cdot\left(x-1\right)+2\cdot\left(x-1\right)\)
\(=\left(x-1\right)\cdot\left(x+2\right)\)
\(d,4x^2-\left(x^2+1\right)\)
\(=\left(2x-x^2-1\right)\cdot\left(2x+x^2+1\right)\)
\(=\left(2x-x^2-1\right)\cdot\left(x+1\right)^2\)
bài này là phân tích đa thức thành nhân tử sao
a) x2 -xy+x-y
= ( x2-xy) +(x-y)
= x (x-y) +(x-y)
= (x-y) (x+1)
b) xz+yz-5( x+y)
= ( xz+yz)-5(x+y)
= z(x+y)-5(x+y)
= (x+y) (z-5)
c) 3x2-3xy-5x+5y
= ( 3x2 -3xy)-(5x+5y)
= 3x(x-y) - 5(x-y)
= (x-y) (3x-5)
\(xy-5y-5x+x^2=\left(x^2+xy\right)-\left(5x+5y\right)=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
=.= hok tốt!!
\(xy-5y-5x+x^2\)
\(=y\left(x-5\right)-x\left(5-x\right)\)
\(=y\left(x-5\right)+x\left(x-5\right)\)
\(=\left(x-5\right)\left(y+x\right)\)
ta có :x(x-y)-5(x-y)=1
(x-y)(x-5)=1=1*1=(-1)(-1)
sau đó xét hai TH là ra kết quả
\(x^2-xy-5x+5y-1=0\)
\(x\left(x-y\right)-5\left(x-y\right)=1\)
\(\left(x-5\right)\left(x-y\right)=1=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)
Ta có bảng :
x-5 | 1 | -1 |
x-y | 1 | -1 |
x | 6 | 4 |
y | 5 | 5 |
Vậy các cặp số x; y thỏa mãn là { 6;5 } và { 4;5 }