Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x}=4\Leftrightarrow x=4^2\Leftrightarrow x=16\)
b)\(\sqrt{x-2}=3\Leftrightarrow x-2=3^2\Leftrightarrow x=9-2=7\)
c)\(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\Leftrightarrow\dfrac{x}{3}-\dfrac{7}{6}=\dfrac{1}{36}\Leftrightarrow\dfrac{x}{3}=-\dfrac{41}{36}\Leftrightarrow x=-\dfrac{41}{12}\)
d)\(x^2=7vớix< 0\)
\(\Leftrightarrow\left(-x\right)^2=7\Leftrightarrow-x=\sqrt{7}\Leftrightarrow x=-\sqrt{7}\)
e)\(x^2-4=0với>0\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\sqrt{4}=2\)
f)\(\left(2x+7\sqrt{7}\right)^2=7\)
\(\Leftrightarrow4x^2+\sqrt{5488}+343=7\)
\(\Leftrightarrow4x^2+\sqrt{5488}=-336\)
\(\Leftrightarrow4x^2=28\left(12-\sqrt{7}\right)\Leftrightarrow x^2=\dfrac{28\left(12-\sqrt{7}\right)}{4}=7\left(12-\sqrt{7}\right)\)
\(\Leftrightarrow x=\sqrt{7\left(12-\sqrt{7}\right)}=\sqrt{84-7\sqrt{7}}\)
\(\sqrt{2}+\sqrt{3}+\sqrt{5}< \sqrt{4}+\sqrt{9}+\sqrt{25}=2+3+5=10< 18\)
b) \(\sqrt{5}+\sqrt{7}+4< \sqrt{9}+\sqrt{9}+4=3+3+4=10< 12\)
a. \(\sqrt{35}+\sqrt{99}< \sqrt{36}+\sqrt{100}=6+10=16\)
\(\Rightarrow\sqrt{35}+\sqrt{99}< 16\)
b. \(\sqrt{24}< \sqrt{25}=5\)
\(\sqrt{5}+\sqrt{10}>\sqrt{4}+\sqrt{9}=2+3=5\)
\(\Rightarrow\sqrt{24}< \sqrt{5}+\sqrt{10}\)
1.
0,2 . \(\sqrt{100}\) - \(\sqrt{\dfrac{16}{25}}\)
= 0,2 . 10 - \(\dfrac{4}{5}\)
= 2 - \(\dfrac{4}{5}\)
= \(\dfrac{6}{5}\)
1/ \(0,2.\sqrt{100}-\sqrt{\dfrac{16}{25}}\)
\(=0,2.10-0,8\)
\(=2-0,8=1,2\)
2/ \(\dfrac{2^7.9^3}{6^5.8^2}\)
\(=\dfrac{93312}{497664}=\dfrac{3}{16}=0,1875\)
3/ \(\sqrt{0,01}-\sqrt{0,25}\)
\(=0,1-0,5\)
\(=-0,4\)
4/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{4}}\)
\(=0,5.10-0,5\)
\(=5-0,5=4,5\)
5/ \(7.\sqrt{0,01}+2.\sqrt{0,25}\)
\(=7.0,1+2.0,5\)
\(=0,7+1=1,7\)
6/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{25}}\)
\(=0,5.10-0,2\)
\(=5-0,2=4,8\)
Dạng tổng quát: \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\) với \(a\ge b\ge0\)
Chứng minh:
Ta có: \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)
\(\Rightarrow\)\(\left(\sqrt{a-b}\right)^2\ge\left(\sqrt{a}-\sqrt{b}\right)^2\)
\(\Rightarrow\)\(a-b\ge a+b-2\sqrt{ab}\)
\(\Rightarrow\)\(-2b\ge-2\sqrt{ab}\)
\(\Rightarrow\)\(b\le\sqrt{ab}\)
\(\Rightarrow\)\(b^2\le ab\) luôn đúng do \(a\ge b\ge0\)
Vậy \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
a) Ta thấy số dưới lẫn số mũ của 536 lớn hơn 220 => 536>220
b)Ta có:\(99^{200}=99^{100}.99^{100}\)
\(9999^{100}=\left(99.101\right)^{100}=99^{100}.101^{100}\)
VÌ \(99^{100}.99^{100}< 99^{100}.101^{100}\)
Nên: \(99^{200}< 9999^{100}\)
c)Ta có: \(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
Vì \(8^{50}< 9^{50}\)nên : \(2^{150}< 3^{100}\)
d)\(\sqrt{26+2}=\sqrt{28}=5< x< 6\)
\(\sqrt{26}+\sqrt{2}=5< x< 6+1< y< 2\)
=> \(\sqrt{26+2}< \sqrt{26}+\sqrt{2}\)
Câu d mình l
a) \(\sqrt{36}=6\)
b) \(-\sqrt{16}=-4\)
c) \(\sqrt{\dfrac{9}{25}}=\dfrac{\sqrt{9}}{\sqrt{25}}=\dfrac{3}{5}\)
d) \(\sqrt{3^2}=3\)
e) \(\sqrt{\left(-3\right)^2}=\sqrt{9}=3\)
a: \(=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\cdot\dfrac{18}{5}-\dfrac{6}{5}:\dfrac{-9}{5}+4\)
\(=\dfrac{18}{5}-\dfrac{6}{5}\cdot\dfrac{-5}{9}+4\)
\(=\dfrac{18}{5}+\dfrac{2}{3}+4\)
\(=\dfrac{124}{15}\)
b: \(=\dfrac{9}{25}\cdot\left(\dfrac{3}{5}-\dfrac{1}{5}+\dfrac{1}{2}\right)-\dfrac{3}{8}:\dfrac{9}{8}\)
\(=\dfrac{9}{25}\cdot\dfrac{4}{10}-\dfrac{1}{3}\)
\(=-\dfrac{71}{375}\)
c: \(=\dfrac{7}{10}:\dfrac{4}{5}+\dfrac{2}{9}:\dfrac{5}{9}+\dfrac{1}{8}\)
\(=\dfrac{7}{10}\cdot\dfrac{5}{4}+\dfrac{2}{5}+\dfrac{1}{8}\)
=1+2/5
=7/5
d: \(=\dfrac{3}{7}\left(19+\dfrac{1}{3}-33-\dfrac{1}{3}\right)-\dfrac{2}{7}=\dfrac{3}{7}\cdot\left(-14\right)-\dfrac{2}{7}=-6-\dfrac{2}{7}=\dfrac{-44}{7}\)
e: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{11}\cdot3^{11}-2^{12}\cdot3^{12}}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{-2^{11}\cdot3^{11}\left(1+2\cdot3\right)}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)
\(=-5\cdot\dfrac{1}{2}+0-5\cdot\dfrac{6}{5}=-\dfrac{5}{2}-6=-\dfrac{17}{2}\)