Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>1/6x=-49/60
=>x=-49/60:1/6=-49/60*6=-49/10
b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2
=>x=17/15 hoặc x=-13/15
c: =>1,25-4/5x=-5
=>4/5x=1,25+5=6,25
=>x=125/16
d: =>2^x*17=544
=>2^x=32
=>x=5
i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5
=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2
=>x=14,4 hoặc x=9,6
j: =>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
a) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow x=\left(\sqrt{7}\right)^2\)
b) \(5\sqrt{x}+1=40\)
\(\Rightarrow5\sqrt{x}=39\)
\(\Rightarrow\sqrt{x}=7,8\)
\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)
c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)
\(\Rightarrow\sqrt{x}=1,2\)
\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)
d) \(4x^2-1=0\)
\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)
e) \(\sqrt{x+1}-2=0\)
\(\Rightarrow\sqrt{x+1}=2\)
\(\Rightarrow x+1=1,414\)
\(\Rightarrow x=0,414\)
f) \(2x^2+0,82=1\)
\(\Rightarrow2x^2=0,18\)
\(\Rightarrow x^2=0,09\)
\(\Rightarrow x=\pm0,3\)
g) Không có kết quả
B1
a. = 7/3. ( 37/5 - 32/5)
= 7/3 . 1
= 7/3
Phần b có gì đó sai sao lại có 3:+
c. = 4 + 6 - 3 + 5
= 12
d. = -5/21 : -19/21 : 4/5
= 25/76
B2
a. 1/4 : x =1/2 - 3/4
x = -1/4
x = 1/4 : -1/4
x = -1
b. 2 . | 2x - 3 | = 4 - (-8)
2 . | 2x - 3| = 12
| 2x - 3 | = 12:2
| 2x - 3 | = 6
| x - 3 | = 6:2
| x - 3 | = 3
=> x - 3 = +- 3
* x - 3 = 3
x = 6
* x - 3 = -3
x = 0
Chúc bạn vui vẻ
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
a) \(\sqrt{x+1}=7\Rightarrow x+1=49\Rightarrow x=48\)
b) \(\left(x-2\right).\left(x+\dfrac{2}{3}\right)>0\)
\(\Rightarrow\left(x-2\right).\left(x+\dfrac{2}{3}\right)\) cùng dấu
\(\Rightarrow\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>2\\x>-\dfrac{2}{3}\end{matrix}\right.\Rightarrow x>2\)
Với \(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 2\\x< -\dfrac{2}{3}\end{matrix}\right.\Rightarrow x< -\dfrac{2}{3}\)
Vậy \(\left[{}\begin{matrix}x>2\\x< -\dfrac{2}{3}\end{matrix}\right.\)
c) \(\left(\dfrac{2}{3}x-1\right).\left(\dfrac{3}{4}x+\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x-1=0\\\dfrac{3}{4}x+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Chúc bạn học tốt!!!!
a, \(\sqrt{x+1}=7\\ \Rightarrow x+1=49\\ \Rightarrow x=48\)
b,TH1:
\(\left\{{}\begin{matrix}x-2>0\\x +\dfrac{2}{3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x>\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow x>2\)
TH2:
\(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x< \dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow x< \dfrac{-2}{3}\)
=> Vậy 2<x< \(\dfrac{-2}{3}\)
c, TH1:
\(\dfrac{2}{3}x-1=0\\ \Rightarrow\dfrac{2}{3}x=1\\ \Rightarrow x=\dfrac{3}{2}\)
TH2:
\(\dfrac{3}{4}x+\dfrac{1}{2}=0\\ \Rightarrow\dfrac{3}{4}x=\dfrac{-1}{2}\\ \Rightarrow x=\dfrac{-2}{3}\)
Vậy x = \(\dfrac{3}{2};\dfrac{-2}{3}\)
a: \(\left|x\right|=3+\dfrac{1}{5}=\dfrac{16}{5}\)
mà x<0
nên x=-16/5
b: \(\left|x\right|=-2.1\)
nên \(x\in\varnothing\)
c: \(\left|x-3.5\right|=5\)
=>x-3,5=5 hoặc x-3,5=-5
=>x=8,5 hoặc x=-1,5
d: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=>|x+3/4|=1/2
=>x+3/4=1/2 hoặc x+3/4=-1/2
=>x=-1/4 hoặc x=-5/4
2) a) \(\left(x+\dfrac{4}{5}\right)^2=\dfrac{9}{25}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{3}{5}\\x+\dfrac{4}{5}=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{5};x=\dfrac{-7}{5}\)
b) \(\left|x-\dfrac{3}{7}\right|=-2\) vì giá trị đối không âm được nên phương trình này vô nghiệm
c) điều kiện : \(x\ge-7\) \(\sqrt{x+7}-2=4\Leftrightarrow\sqrt{x+7}=4+2=6\)
\(\Leftrightarrow x+7=6^2=36\Leftrightarrow x=36-7=29\) vậy \(x=29\)
d) \(x^2-\dfrac{7}{9}x=0\Leftrightarrow x\left(x-\dfrac{7}{9}\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-\dfrac{7}{9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\) vậy \(x=0;x=\dfrac{7}{9}\)
1) tìm GTNN
a) \(B=\left|x-2017\right|+\left|x-20\right|\)
B \(\ge\left|x-2017-x+20\right|=\left|-1997\right|=1997\)
Dấu " = " xảy ra khi và chỉ khi 20 \(\le x\le2017\)
Vậy MinB = 1997 khi 20 \(\le x\le2017\)
b) \(C=\left|x-3\right|+\left|x-5\right|\)
\(C\ge\left|x-3-x+5\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi 3 \(\le x\le5\)
Vậ MinC = 2 khi và chỉ khi 3 \(\le x\le5\)
c) \(C=\left|x^2+4\right|+3\)
Ta thấy \(x^2+4\ge0\) với mọi x
nên \(\left|x^2+4\right|+3=x^2+4+3=x^2+7\)\(\ge\) 7
Dấu " =" xảy ra khi x = 0
MinC = 7 khi và chỉ khi x = 0
a)\(\sqrt{x}=4\Leftrightarrow x=4^2\Leftrightarrow x=16\)
b)\(\sqrt{x-2}=3\Leftrightarrow x-2=3^2\Leftrightarrow x=9-2=7\)
c)\(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\Leftrightarrow\dfrac{x}{3}-\dfrac{7}{6}=\dfrac{1}{36}\Leftrightarrow\dfrac{x}{3}=-\dfrac{41}{36}\Leftrightarrow x=-\dfrac{41}{12}\)
d)\(x^2=7vớix< 0\)
\(\Leftrightarrow\left(-x\right)^2=7\Leftrightarrow-x=\sqrt{7}\Leftrightarrow x=-\sqrt{7}\)
e)\(x^2-4=0với>0\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\sqrt{4}=2\)
f)\(\left(2x+7\sqrt{7}\right)^2=7\)
\(\Leftrightarrow4x^2+\sqrt{5488}+343=7\)
\(\Leftrightarrow4x^2+\sqrt{5488}=-336\)
\(\Leftrightarrow4x^2=28\left(12-\sqrt{7}\right)\Leftrightarrow x^2=\dfrac{28\left(12-\sqrt{7}\right)}{4}=7\left(12-\sqrt{7}\right)\)
\(\Leftrightarrow x=\sqrt{7\left(12-\sqrt{7}\right)}=\sqrt{84-7\sqrt{7}}\)
a) \(\sqrt{x}=4\Rightarrow x=16\)
b) \(\sqrt{x-2}-3\\ \Rightarrow x-2=9\\ \Rightarrow x=11\)
c) \(x^2=7\\ \Rightarrow x=\pm\sqrt{7}\\ Vớix< 0\Rightarrow x=-\sqrt{7}\)
d) \(x^2-4=0\\\Rightarrow x=\pm2\\ Vớix>0\Rightarrow x=2 \)