\(\sqrt{2}+\sqrt{3}+\sqrt{5}v\text{à}18\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

\(\sqrt{2}+\sqrt{3}+\sqrt{5}< \sqrt{4}+\sqrt{9}+\sqrt{25}=2+3+5=10< 18\)

b) \(\sqrt{5}+\sqrt{7}+4< \sqrt{9}+\sqrt{9}+4=3+3+4=10< 12\)

7 tháng 1 2018

nhanh hộ mình với

14 tháng 8 2018

a. \(\sqrt{35}+\sqrt{99}< \sqrt{36}+\sqrt{100}=6+10=16\)

\(\Rightarrow\sqrt{35}+\sqrt{99}< 16\)

b. \(\sqrt{24}< \sqrt{25}=5\)

\(\sqrt{5}+\sqrt{10}>\sqrt{4}+\sqrt{9}=2+3=5\)

\(\Rightarrow\sqrt{24}< \sqrt{5}+\sqrt{10}\)

25 tháng 10 2023

Jdkdk

Jidkri

10 tháng 12 2016

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

 

30 tháng 8 2016

a) Ta có \(\sqrt{170}>\sqrt{169}\\\)

mà \(\sqrt{169}=13\)

=> \(\sqrt{170}>13\)

b) Ta có \(\sqrt{6}< \sqrt{9}\)

mà \(\sqrt{9}=3\)

=> \(\sqrt{6}< 3\)

c) ta có \(\sqrt{226}>\sqrt{225}\)

mà \(\sqrt{225}=15\)

=>\(\sqrt{226}>15\)

d) \(\sqrt{12}>\sqrt{7}\)

e)

Ta có\(\sqrt{150}< \sqrt{180}\)

mà \(\sqrt{150}=5\sqrt{6}\)

\(\sqrt{180}=6\sqrt{5}\)

=> \(5\sqrt{6}< 6\sqrt{5}\)

21 tháng 10 2016

a)\(\sqrt{4}+\sqrt{14}=5,741657387\)

\(\sqrt{18}\)=4,242640687

->vay: dien dau >

b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{18}=16,23872966\)

\(\sqrt{90}=9,486832981\)

->vay : điền dấu <

21 tháng 10 2016

a)\(\sqrt{4}+\sqrt{14}\) và \(\sqrt{18}\)

ta có : \(\sqrt{18}=\sqrt{14}+\sqrt{4}\)

suy ra : \(\sqrt{4}+\sqrt{14}=\sqrt{18}\)

b)\(\sqrt{15}+\sqrt{16}+\sqrt{17}+\sqrt{12}\)với \(\sqrt{90}\)

ta có :\(\sqrt{90}=\sqrt{20}+\sqrt{20}+\sqrt{20}+\sqrt{30}\)

mà :\(\sqrt{20}>\sqrt{15};\sqrt{20}>\sqrt{16};\sqrt{20}>\sqrt{17};\sqrt{30}>\sqrt{12}\)

suy ra :\(\sqrt{90}\)lớn hơn

\(\text{a, }2^{30}=8^{10}\)

     \(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)

\(\text{Vậy }2^{30}< 3^{20}\)

\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)

     \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(\text{Vậy }5^{300}< 243^{100}\)

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

6 tháng 11 2017

tính bình thường thôi

29 tháng 10 2017

So sánh các số sau: 

a = 3549 b = 5272 c = 52+35272+492 d = 5235272492 

=> A < B