Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
a) n + 4 chia hết cho n
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n
=>n Є {1;2;4}
b/ 3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
9-5n chia hết cho n => 9 chia hết cho n => n thuộc Ư(9)={-9;-3;-1;1;3;9}
mà n thuộc N => n=1;3;9
1) \(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(2x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2=\left(\frac{-3}{5}\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=\frac{-3}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=\frac{-4}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=\frac{-2}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{5}\\y=\frac{-2}{5}\end{array}\right.\)
2) Ta có:
29 + 299
= 29.(1 + 290)
= 512.(1 + 280.210)
= 512.[1 + (220)4.1024]
= 512.[1 + (...26)4.2014)]
= 512.[1 + (...26).1024]
= 512.[1 + (...24)]
= 512.(...25)
= 128.4.(...25)
= 128.(...00)
= (...00) \(⋮100\)
Chứng tỏ \(2^9+2^{99}⋮100\)
Bài 1:
\(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow2x+\frac{1}{5}=\pm\frac{3}{5}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=-\frac{4}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=-\frac{2}{5}\end{array}\right.\)
Vậy ........
Điều kiện; n nguyên
Ta có: \(\left(5\text{}n-9\right)⋮n\)
Vì \(5n⋮n\) nên \(-9⋮n\)
\(\Rightarrow n\inƯ\left(-9\right)=\left\{\pm1,\pm3,\pm9\right\}\) 9thỏa mãn)
Vậy...
Bổ sung: `n` thuộc `Z`
Ta có: `5n-9` và `n` thuộc `Z; n ≠ 0`
`5n - 9 ⋮ n`
Do `n ⋮ n => 5n ⋮ n`
`=> 9 ⋮ n`
`=> n` thuộc `Ư(9) =` {`-9;-3;-1;1;3;9`} (Thỏa mãn)
Vậy ...