Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-7=-10\\ x=-3\\ x-5=-100\\ x=-95\\ x+100=-1\\ x=-101\\ x-8=-20\\ x=-12\\ x+8=-22\\ x=-30\)
Bài 1:
$10+3(x-6)=5^{10}:5^8=5^2=25$
$3(x-6)=25-10=15$
$x-6=15:3=5$
$x=5+6=11$
Bài 2:
a. $100-[150-8(7-4)^2]=100-(150-8.3^2)=100-150+8.3^2$
$=-50+72=72-50=22$
b. $=-999-23+999-10-67=(-999+999)-10-(67+23)$
$=0-10-90=-(10+90)=-100$
a) 5^x-1 = 5^2 + 100
=> 5x-1 = 125 = 53
=> x - 1 = 3
=> x = 4.
b) x10 = x
=> x = {-1;0;1}
2.52.32 + {[2.53 - (5x + 4).5 : (23.3.5)]} = 455
=> 450 + {250 - (5x + 4).5 : 120} = 455
=> 250 - (5x + 4).5 : 120 = 5
=> (5x + 4).5 : 120 = 245
=> (5x + 4).5 = 245.120 = 29400
=> 5x + 4 = 29400 : 5 = 5880
=> 5x = 5876
=> x = 1175,2
Tìm xx biết: \left(x^{4}\right)^{3}=\dfrac{x^{19}}{x^{6}}(x4)3=x6x19
Trả lời: x=x=
1: =-2/9(15/17+2/17)=-2/9
2: \(=\dfrac{-6}{3}+\dfrac{-21}{90}\)
=-2-7/30=-67/30
3: \(=\dfrac{3}{4}\cdot\dfrac{7}{5}+\dfrac{9}{7}\cdot\dfrac{3}{2}\)
=21/20+27/14=417/140
4: =-25/13(5/19+14/19)=-25/13
5: =-7/5-45/21=-7/5-15/7=-124/35
1: =-2/9(15/17+2/17)=-2/9
2: =−63+−2190=−63+−2190
=-2-7/30=-67/30
3: =34⋅75+97⋅32=34⋅75+97⋅32
=21/20+27/14=417/140
4: =-25/13(5/19+14/19)=-25/13
5: =-7/5-45/21=-7/5-15/7=-124/35
a, 48.84
= (22)8.(23)4
= 216.212
= 228
b, 415.515
= (4.5)15
= 2015
c, 210.15 + 210.85
= 210.(15 + 85)
= 210.100
=210.(2.5)2
= 212.52
d, 33.92
= 33 . (32)2
= 33.34
= 37
e, 512.7 - 511.10
= 511.(5.7 - 10)
= 511.25
=511.52
=513
f, \(x^1\).\(x^2\).\(x^3\)....\(x^{100}\)
= \(x^{1+2+3+...+100}\)
= \(x^{\left(1+100\right).100:2}\)
= \(x^{5050}\)
(5-x)100=(5-x)10
=> (5-x)100-(5-x)10=0
=> (5-x)10.[(5-x)90-1]=0
\(\Rightarrow\left[{}\begin{matrix}\left(5-x\right)^{10}=0\\\left(5-x\right)^{90}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5-x=0\\\left(5-x\right)^{90}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\5-x=\pm1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
\(\left(5-x\right)^{100}=\left(5-x\right)^{10}\\ =>\left(5-x\right)^{100}-\left(5-x\right)^{10}=0\\ =>\left(5-x\right)^{10}\left[\left(5-x\right)^{90}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(5-x\right)^{10}=0\\\left(5-x\right)^{90}-1=0\end{matrix}\right.=>\left[{}\begin{matrix}5-x=0\\5-x=1\end{matrix}\right.\\\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)