Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(x^2+5x+6\)
\(=x^2+5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)
b ) \(x^2\left(1-x^2\right)-4+4x^2\)
\(=x^2\left(1-x^2\right)-4\left(1-x^2\right)\)
\(=\left(x^2-4\right)\left(1-x^2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)
a) \(x^2+5x+6\\ =x^2+5x+\frac{25}{4}-\frac{1}{4}\\ =\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\\ \)
b) \(x^2\left(1-x^2\right)-4+4x^2\\ =x^2\left(1-x^2\right)-4\left(1-x^2\right)\\ =\left(x^2-4\right)\left(1-x^2\right)\\ =\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)
a/ \(x^2+5x+6\)
\(=x^2+5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)
\(=\left(x+3\right)\left(x+2\right)\)
b/ \(x^2\left(1-x^2\right)-4+4x^2\)
\(=x^2\left(1-x^2\right)-4\left(1-x^2\right)\)
\(=\left(x^2-4\right)\left(1-x^2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1-x\right)\)
x4 + 2x3 + 5x2 + 4x -12=0
<=> x4 - x3 + 3x3 - 3x2 + 8x2 - 8x + 12x - 12 = 0
<=> ( x4 - x3 ) + ( 3x3 - 3x2 ) + ( 8x2 - 8x ) + ( 12x - 12 ) = 0
<=> ( x - 1 ) ( x3 + 3x2+ 8x +12) = 0
<=> ( x -1 ).[ ( x3 + 2x2 ) + ( x2 + 2x ) + ( 6x +1) ] = 0
<=>( x - 1). ( x + 2 ).( x2 + x + 6 ) = 0
<=> x = 1 hoặc x = -2
Vũ Thanh Bình sai rùi
\(x^5+5x^3+4x\)
\(=x^5+4x^3+x^3+4x\)
\(=x^3.\left(x^2+4\right)+x\left(x^2+4\right)\)
\(=\left(x^3+x\right)\left(x^2+4\right)\)
\(=x\left(x^2+1\right)\left(x^2+4\right)\)
\(=x^5+4x^3+x^3+4x\)
\(=x^3\left(x^2+4\right)+x\left(x^2-4\right)\)
\(=\left(x^3+x\right)\left(x^2-2^2\right)\)
\(=x\left(x^2+1\right)\left(x-2\right)\left(x+2\right)\)
Ta có : \(4x^2-3x-1\)
\(=4x^2-4x+x-1\)
\(=4x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(4x+1\right)\)
Ta có : \(x^2-7x+12\)
\(=x^2-3x-4x+12\)
\(=x\left(x-3\right)-\left(4x-12\right)\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-4\right)\left(x-3\right)\)
a) \(4x^4+4x^3+5x^2+2x+1\)
= \(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)
=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)
Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)
Thay vào (1), ta có:
\(x^2\left(a^2-4+2a+5\right)\)
=\(x^2\left(a^2+2a+1\right)\)
=\(x^2\left(a+1\right)^2\)
=\(\left[x\left(a+1\right)\right]^2\)
=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)
=\(\left(2x^2+1+x\right)^2\)
\(=\left(2x^2+x+1\right)^2\)
a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1
Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )
<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1
<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1
Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)
Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2
b) 3x4 + 11x3 - 7x2 - 2x + 1
= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1
= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )
= ( 3x - 1 )( x3 + 4x2 - x - 1 )
\(4x^2-5x-6=4x^2-8x+3x-6\)
\(=4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(4x+3\right)\)