![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)x4-4x3+12x-9 = x3(x-1) -3x2(x-1) -3x(x-1) +9(x-1)
=(x-1)(x3-3x2-3x+9)
=(x-1)[x2(x-3)-3(x-3)]
=(x-1)(x-3)(x2-3)
b)(x+2)2=9(x2-4x+4) <--> x2+4x+4=9x2-36x+36
<-->8x2 -40x+32=0
<-->8(x2-5x+4)=0
<-->x2-5x+4=0
<--->(x-4)(x-1)=0
* Nếu x-4=0 <--> x=4
* Nếu x-1=0<--> x=1
Vậy S={4;1}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{20x^{2}-45}{4x^{2}+12x+9}\)\(=\dfrac{5.(4x^{2}-9)}{(2x)^{2}+2.2x.3+3^{2}}\)\(=\dfrac{5(2x-3)(2x+3)}{(2x+3)^{2}}\)\(=\dfrac{5(2x-3)}{2x+3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
PT có 2 nghiệm nguyên x=1, x=-3.Bạn tự phân tích VT thành nhân tử và tìm nghiệm. (có tổng cộng 4 nghiệm 2 nghiệm nguyên và hai nghiệm vô tỉ)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b. \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c. \(4x^2+12x+9=\left(2x\right)^2+2\cdot2x\cdot3+3^2=\left(2x+3\right)^2\)
d. \(9x^2+30x+25=\left(3x\right)^2+2\cdot3x\cdot5+5^2=\left(3x+5\right)^2\)
e. \(4x^2-20x+25=\left(2x\right)^2-2\cdot2x\cdot5+5^2=\left(2x+5\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(4x^2-12x+9=\left(2x\right)^2-2\cdot2x\cdot3+3^2=\left(2x-3\right)^2\)
b) \(4x^2+4x+1=\left(2x\right)^2+2\cdot2x\cdot1+1^2=\left(2x+1\right)^2\)
c) \(1+12x+36x^2=1^2+2\cdot1\cdot6x+\left(6x\right)^2=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2=\left(3x\right)^2-2\cdot3x\cdot4y+\left(4y\right)^2=\left(3x-4y\right)^2\)
e) \(8x^3+1=\left(2x\right)^3+1^3=\left(2x+1\right)\left(4x^2+2x+1\right)\)
f) \(-8x^3+27=3^3-\left(2x\right)^3=\left(3-2x\right)\left(9+6x+4x^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(x^4-4x^3+12x-9=0\)
\(\Rightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)
\(\Rightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)
\(\Rightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left(x^2-3x-x+3\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left[x\left(x-3\right)-\left(x-3\right)\right]\left(x^2-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-1\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-3=0\\x-1=0\\x^2-3=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=3\\x=1\\x=\pm\sqrt{3}\end{matrix}\right.\)
Bài 2:
\(x^4-4x^3+3x^2+4x-4=0\)
\(\Rightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Rightarrow x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)
\(\Rightarrow\left(x^2-4x+4\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x-2\right)^2\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
=(2x+1)^2-2(2x-3)(2x+1)+(4x^2-12x+9)
=(2x+1)^2-2(2x-3)(2x+1)+(2x-3)^2
=[(2x+1)-(2x-3)]^2
=(2x+1-2x+3)^2
=4^2=16
\(\left(2x+1\right)^2-2\left(2x-3\right)\left(2x+1\right)+4x^2-12x+9\)=\(=\left(2x+1\right)^2-2\left(2x+1\right)\left(2x-3\right)+\left(2x\right)^2-2.2x.3+3^2\)(ta thấy có dạng hằng đẳng thức \(A^2-2AB+B^2\))
\(=\left(\left(2x+1\right)-\left(2x-3\right)\right)^2\)
\(=\left(2x+1-2x+3\right)^2\)
\(=4^2\)=16
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(4x^2-8x+4-9\left(x-y\right)^2\)
\(=4\left(x^2-2x+1\right)-9\left(x-y\right)^2\)
\(=\left[2\left(x-1\right)\right]^2-\left[3\left(x-y\right)\right]^2\)
\(=\left(2x-2+3x-3y\right)\left(2x-2-3x+3y\right)\)
\(=\left(5x-3y-2\right)\left(3y-x-2\right)\)
b) \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
\(=\left(2x-3\right)^2\)
\(\left(2x-3\right)^2\)