Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =2345-2345/96=222775/96
b: =1000-1000:1000=1000-1=999
c: =123(25+74+1)=12300
d: =1-1/3+1/3-1/5+1/5-1/7+1/7-1/9=8/9
4/3x5 + 4/5x7 +....+ 4/99x 101
=4x(1/3x5 + 1/5x7 +....+1/99x101)
=4x1/2x(1/3-1/5 + 1/5 -1/7+...+ 1/99 -1/101)
=4 x 1/2x(1/3 - 1/101)
=196/303
a=511/256
b=647/20
c=mình đang suy nghĩ,nhưng nếu bạn k cho mình thì bạn sẽ có câu trả lời
a. 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
= 1 + ( 1 - 1/2) + ( 1/2 - 1/4) + ( 1/4 - 1/8) + ( 1/8 - 1/16) + ( 1/16 - 1/32) + (1/32 - 1/64) + ( 1/64 - 1/128) + (1/128 - 1/256)
= 1 + 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256
= 2 - 1/256
= 511/256
Câu b bạn có viết sai đề không vậy?
Đặt A =2/1x3+2\3x5+................+2/41x43
A =1/1-1/3+1/3-1/5+...................+1/41-1/43
A=1-1/43
A=42/43
A=2/1X3+2/3X5+2/5X7+. . .+2/41X43
A=1/1-1/3+1/3-1/5+1/5-1/7+. . .+1/41-1/43
A=1/1-1/43
A=42/43
Tick mk nhé
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{99\times101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Rightarrow B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow B=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
_Học tốt_
Đặt A = \(\dfrac{4}{1\cdot3}+\dfrac{4}{3\cdot5}+\dfrac{4}{5\cdot7}+...+\dfrac{4}{19\cdot21}+\dfrac{4}{21\cdot23}\)
Ta có : A = \(\dfrac{4}{1\cdot3}+\dfrac{4}{3\cdot5}+\dfrac{4}{5\cdot7}+...+\dfrac{4}{19\cdot21}+\dfrac{4}{21\cdot23}\)
A = \(2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{19\cdot21}+\dfrac{2}{21\cdot23}\right)\)
A = \(2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{23}\right)\)
A = \(2\left(1-\dfrac{1}{23}\right)\)
A = \(2\cdot\dfrac{22}{23}\)
A = \(\dfrac{44}{23}\)
A = 44/23