Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{2}{5}\right)\times\left(1-\dfrac{2}{7}\right)\times\left(1-\dfrac{2}{9}\right)\)
\(=\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\times\left(\dfrac{5}{5}-\dfrac{2}{5}\right)\times\left(\dfrac{7}{7}-\dfrac{2}{7}\right)\times\left(\dfrac{9}{9}-\dfrac{2}{9}\right)\)
\(=\dfrac{2}{3}\times\dfrac{3}{5}\times\dfrac{5}{7}\times\dfrac{7}{9}\)
\(=\dfrac{2\times3\times5\times7}{3\times5\times7\times9}\)
\(=\dfrac{2}{9}\)
b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)
\(=1-\dfrac{1}{9}\)
\(=\dfrac{9}{9}-\dfrac{1}{9}\)
\(=\dfrac{8}{9}\)
Sửa câu b)
b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
Đặt \(A=\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
\(2A=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)
\(2A=1-\dfrac{1}{9}\)
\(2A=\dfrac{9}{9}-\dfrac{1}{9}\)
\(2A=\dfrac{8}{9}\)
\(A=\dfrac{8}{9}:2\)
\(A=\dfrac{8}{18}\)
\(A=\dfrac{4}{9}\)
Vậy : \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}=\dfrac{4}{9}\)
2A=1+1/2+1/4+1/8+1/16+1/32+1/64
2A-A=(1+1/2+1/4+1/8+1/16+1/32+1/64)-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
A=1-1/128
A=127/128
A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
suy ra: 2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A - A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 - 1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128
A = 1 - 1/128 = 127/128
hok tốt
A = \(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + \(\dfrac{2}{7\times9}\)
A = \(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\) + \(\dfrac{1}{7}-\dfrac{1}{9}\)
A = \(\dfrac{1}{1}-\dfrac{1}{9}\)
A = \(\dfrac{8}{9}\)
B = \(\dfrac{1}{3}+\dfrac{1}{15}\) + \(\dfrac{1}{35}+\) \(\dfrac{1}{63}\) + ... + \(\dfrac{1}{195}\)
B = \(\dfrac{1}{1\times3}\) + \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) + ...+ \(\dfrac{1}{13\times15}\)
B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + ..+ \(\dfrac{1}{13}\) - \(\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}-\dfrac{1}{5}\) + ...+\(\dfrac{1}{13}-\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}-\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x \(\dfrac{14}{15}\)
B = \(\dfrac{7}{15}\)
Ta có : \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^6}+\frac{1}{2^7}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{2}{8}=\frac{256}{256}-\frac{1}{256}=\frac{255}{256}\)
a=511/256
b=647/20
c=mình đang suy nghĩ,nhưng nếu bạn k cho mình thì bạn sẽ có câu trả lời
a. 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
= 1 + ( 1 - 1/2) + ( 1/2 - 1/4) + ( 1/4 - 1/8) + ( 1/8 - 1/16) + ( 1/16 - 1/32) + (1/32 - 1/64) + ( 1/64 - 1/128) + (1/128 - 1/256)
= 1 + 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256
= 2 - 1/256
= 511/256
Câu b bạn có viết sai đề không vậy?