![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
-pt:\(x^2-3x+2m-1=0\) (1)
-để pt(1) có 2 nghiệm:=)\(\Delta=\left(-3\right)^2-4\cdot\left(2m-1\right)\ge0\)
<=>\(9-8m+4\ge0\)
<=>\(-8m\ge-13\)
<=>\(m\le\frac{13}{8}\)
---theo vi-ét ta có:
\(x_1+x_2=3\)
\(x_1\cdot x_2=2m-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
P=\(\frac{\sqrt{10+2\sqrt{25-9x^2}}}{x}\)
P=\(\frac{\sqrt{10+2\sqrt{\left(5+3x\right)\left(5-3x\right)}}}{x}\)
P=\(\frac{\sqrt{10+10-a^2}}{x}\)(Vì a2=\(\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2\)=10-2\(\sqrt{\left(5+3x\right)\left(5-3x\right)}\))
\(\sqrt{5+3x}-\sqrt{5-3x}=a\)
\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)
\(\Leftrightarrow5+3x+5-3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}=a^2\)
\(\Leftrightarrow10-2\sqrt{\left(5+3x\right)\left(5-3x\right)}=a^2\)
\(\Leftrightarrow2\sqrt{\left(5+3x\right)\left(5-3x\right)}=10-a^2\)
Thế vào P ta được:
\(P=\frac{\sqrt{10+2\sqrt{25-9x^2}}}{x}=\frac{\sqrt{10+2\sqrt{\left(5-3x\right)\left(5+3x\right)}}}{x}\)
\(=\frac{\sqrt{10+10-a^2}}{x}\)
\(=\frac{\sqrt{20-a^2}}{x}\)
P/s: nếu em có sai sót, xin bỏ qua
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a)
\(\Delta=9-4m\)
Nếu \(m>\frac{9}{4}\Rightarrow \Delta=9-4m<0\Rightarrow \) pt vô nghiệm
Nếu \(m=\frac{9}{4}\Rightarrow \Delta=9-4m=0\Rightarrow \) pt có nghiệm kép \(x_1=x_2=\frac{3}{2}\)
Nếu \(m< \frac{9}{4}\Rightarrow \Delta=9-4m>0\Rightarrow \) pt có 2 nghiệm phân biệt
\(x_1=\frac{3+\sqrt{9-4m}}{2}; x_2=\frac{3-\sqrt{9-4m}}{2}\)
b)
Nếu \(m=\frac{1}{2}\) thì : \(-x+1=0\).
PT có nghiệm duy nhất $x=1$
Nếu \(m\neq \frac{1}{2}\Leftrightarrow 2m-1\neq 0\). PT đã cho là PT bậc 2 ẩn $x$.
\(\Delta'=m^2-(2m-1)=(m-1)^2\)
+) \(m=1\Rightarrow \Delta'=0\): PT có nghiệm kép \(x_1=x_2=1\)
+) \(m\neq 1\Rightarrow \Delta'>0\): PT có hai nghiệm phân biệt
\(x_1=\frac{m-(m-1)}{2m-1}=\frac{1}{2m-1}\); \(x_2=\frac{m+(m-1)}{2m-1}=1\)
Vậy.......
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Tìm được A = 1 x - 1 ; với x≥0, x≠1. Ta có A = 1 2 => x = 9
b, Tìm được P = x + 2 x - 1 . Ta có P<0 và điều kiện x≥0, x≠1 ta tìm được 0≤x≤1
c, M = x + 12 x - 1 . 1 P = x + 12 x + 2 = x + 2 2 x + 2 + 4 ≥ 4
Vậy M min = 4 <=> x = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
Hiển nhiên \(a=0\) ko phải nghiệm
\(a^2-3a-1=0\Leftrightarrow a^2-1=3a\) \(\Rightarrow a-\dfrac{1}{a}=3\Rightarrow\left(a-\dfrac{1}{a}\right)^2=9\)
\(\Rightarrow a^2+\dfrac{1}{a^2}-2=9\Rightarrow a^2+\dfrac{1}{a^2}=11\)
\(Q=\dfrac{1}{a^2+\dfrac{1}{a^2}+1}=\dfrac{1}{11+1}=\dfrac{1}{12}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giao luu: Vi_et, tam giác đều
điều kiện có nghiệm m>=0
\(\orbr{\begin{cases}x_1+x_2=2\left(1\right)\\x_1x_2=1-m\left(2\right)\end{cases}}\)gọi a,b dễ viết \(P=!3a+b!+!3b+a!\)
\(P=!2a+2!+!2b+2!=2\left(!a+1!+!b+1!\right)\)
g/s b>=a => !b+1!=b+1 vì khi đó b>0
giờ lại phải xem a với -1 khi nào
f(-1)=4+m vậy với m=4 xẽ có nghiệm a=-1=>
TH xét 0<m<=4
\(P=2\left[\left(a+1\right)+b+1\right]=2.4=8\)
TH m>4
\(P=2\left[\left(b+1\right)-\left(a+1\right)\right]=2\left(b-a\right)\)có vẻ phức tạp tơn
(a+b)^2=4=> (b-a)^2=4-4ab=4-4(1-m)=m
Vì b>=a=> \(b-a=2\sqrt{m}\)
\(P=4.\sqrt{m}\)
có vẻ mệt hơn cách thông thường
Mình làm BT
\(\left(x-1\right)^2=m\Rightarrow m\ge0\Rightarrow\orbr{\begin{cases}x_1=1-\sqrt{m}\\x_2=1+\sqrt{m}\end{cases}}\)\(P=2.\left[!\left(2-\sqrt{m}\right)!+!\left(2+\sqrt{m}\right)!\right]\)
Nếu \(2-\sqrt{m}\ge0\Rightarrow0\le m\le4\)\(\Rightarrow P=2\left(2+2\right)=8\)
nếu\(2-\sqrt{m}< 0\Rightarrow m>4\) \(P=2\left(-2+\sqrt{m}+2+\sqrt{m}\right)=4\sqrt{m}\)
có lẽ mình áp dụng Vi_et chưa hay!
Cách em áp dụng viet đúng ,phức tạp hơn đúng. Nó phát huy tác dụng với bài phức tạp hơn. Vdụ rẽ hiểu. Nhà bạn cách nhà 50m ? Đi bộ hay đi xe đạp ai đến trước.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)
\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x-2=0\)
hoặc \(x+2=0\)
hoặc \(2x+3=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-2\)
hoặc \(x=-\frac{3}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=4\)
hoặc \(x=1\)
hoặc \(x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
d) \(x^4-3x^3+3x^2-x=0\)
\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)
e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
g) \(x^3+3x^2+3x+1=4x+4\)
\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Viết lại phương trình như sau: x2 - 3x + 2 - y - y2 = 0
Coi x là ẩn; y là tham số
ta có: \(\Delta\) = (-3)2 - 4(2 - y - y2 ) = 4y2 + 4y + 1 = (2y + 1)2 \(\ge\) 0 với mọi y
=> phương trình đã cho luôn có nghiệm là : \(x_1=\frac{3+2y+1}{2}=y+2;x_2=\frac{3-2y-1}{2}=1-y\)
b) x = y + 2 và x = 1 - y thoả mãn phương trình
=> y = x - 2 và y = 1 - x thoả mãn phương trình
c) do x = y + 2 và x = 1 - y là nghiệm của phương trình x2 - 3x + 2 - y - y2 = 0
=> x2 - 3x + 2 - y - y2 = (x - y - 2). (x - 1+ y)
*) Chú ý: Nếu x1; x2 là nghiệm của ax2 + bx + c = 0 => ax2 + bx + c = a.(x - x1)(x - x2)
Help!!
(x2+x+1)(x2+x+2)=12
x(x+1)(x2+x+1)=42
(x2+x+1)2= 3(x4+x2+1)
3x + a + 1 = 0
=> 3x + a = -1
=> 3x = -1 - a
=> x = \(\frac{-1 - a}{3}\)