Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Phương trình tương đương với \(\left(x^2-2x-2\right)\left(x^2+5x-2\right)=0\) hay \(x^2-2x-2=0\) hoặc \(x^2+5x-2=0\). Đến đây sử dụng Delta hoặc viết hai phương trình dưới dạng \(\left(x-1\right)^2=3,\left(2x+5\right)^2=33\) ta được bốn nghiệm là \(x=1\pm\sqrt{3},-\frac{5}{2}\pm\frac{\sqrt{33}}{2}\)
b. Phương trình tương đương với \(3\left(x+5\right)\left(x+6\right)\left(x+9\right)=8x+6\left(x+5\right)\left(x+6\right)\leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+9\right)=\left(x+9\right)\left(6x+20\right)\)
hay \(\left(x+9\right)\left(3x^2+27x+70\right)=0\leftrightarrow x=-9.\)
ĐKXĐ \(x\ge1\)
\(3x^2+8x+7=5\sqrt{\left(x-1\right)\left(x^2+2x+3\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+2x+3}=b\left(a,b\ge0\right)\)
=> \(3b^2+2a^2=3x^2+8x+7\)
Khi đó PT
<=> \(3b^2+2a^2=5ab\)
<=> \(\left(a-b\right)\left(2a-3b\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)
+ a=b
<=> \(\sqrt{x-1}=\sqrt{x^2+2x+3}\)
<=> \(x^2+x+4=0\)vô nghiệm
+ 2a=3b
\(2\sqrt{x-1}=3\sqrt{x^2+2x+3}\)
<=> \(9x^2+14x+31=0\)vô nghiệm
Vậy PT vô nghiệm
Cách khác \(3x^2+8x+7=5\sqrt{\left(x-1\right)\left(x^2+2x+3\right)}\le\frac{5}{2}\left(x^2+3x+2\right)\)bất đẳng thức cosi
=> \(x^2+x+4\le0\)vô lý vì \(x^2+x+4=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\)
=> pt vô nghiệm
Vậy PT vô nghiệm
pn viết y/c đi
3(x+5)(x+6)(x+7)=8x
<=>3x3+54x2+321x+630=8x
<=>(x+9)(3x2+27x+70)=0
<=>x+9=0 hoặc 3x2+27x+70=0
Vậy phương trình trên có nghiệm là -9