Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
******************************************************
a) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
b) \(x^3-3x+2=x^3+2x^2-2x^2-4x+x+2\)
\(=x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)
c) \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9\)
\(=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)
d) \(x^3+8x^2+17x+10=x^3+2x^2+6x^2+12x+5x+10\)
\(=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+6x+5\right)=\left(x+2\right)\left(x+5\right)\left(x+1\right)\)
e) \(x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
f) \(x^3+3x^2+3x+2=x^3+2x^2+x^2+2x+x+2\)
\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+x+1\right)\)
a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)
hay \(x\in\left\{0;-4;3\right\}\)
d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)
hay \(x\in\left\{-6;1;-1;-4\right\}\)
f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
hay \(x\in\left\{-3;2\right\}\)
f)
$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$
$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$
$=\frac{x(x^2+1)}{(2-3x)^2}$
g)
$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$
$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$
h)
$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$
$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$
$=\frac{5x}{6(x-1)}$
d)
$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$
$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$
$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$
$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)
$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$
$=\frac{-3(x+7)}{2x+1}$
1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)= \(\frac{6x}{3xy}\)=\(\frac{3}{y}\)
2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1
3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)
4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)
5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)
=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)
a) \(x^3+3x^2-5x+1=\left(x^3-1\right)+\left(3x^2-3x\right)-\left(2x-2\right)=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x^2+4x-1\right)\)
b: \(=x^3+x^2-6x^2-6x+8x+8\)
\(=\left(x+1\right)\left(x^2-6x+8\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x-4\right)\)
c: \(=x^3+x^2-6x^2-6x+9x+9\)
\(=\left(x+1\right)\left(x^2-6x+9\right)\)
\(=\left(x+1\right)\left(x-3\right)^2\)
Bài làm
j) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\) ĐKXĐ: \(x\ne\pm5\)
\(\Leftrightarrow\frac{\left(x+5\right)^2}{x^2-25}-\frac{\left(x-5\right)^2}{x^2-25}=\frac{20}{x^2-25}\)
\(\Rightarrow x^2+10x+25-x^2+10x-25=20\)
\(\Leftrightarrow20x=20\)
\(\Leftrightarrow x=1\)
Vậy x = 1 là nghiệm phương trình.
k) \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)
\(\Leftrightarrow\frac{3\left(x+4\right)}{x^2-16}+\frac{5x-2}{x^2-16}=\frac{4\left(x-4\right)}{x^2-16}\)
\(\Rightarrow3x+12+5x-2=4x-16\)
\(\Leftrightarrow4x=-26\)
<=> \(x=-\frac{13}{2}\)
Vậy x = -13/2 là nghiệm phương trình.
l) \(\frac{2x-1}{3}-\frac{5x+2}{4}=2x\)
\(\Leftrightarrow4x-4-15x-6=24x\)
\(\Leftrightarrow-35x=10\)
\(\Leftrightarrow x=-\frac{2}{7}\)
Vậy x = -2/7 là nghiệm phương trình.
Bài làm
2 - x = 3x + 1
<=> - x - 3x = -2 + 1
<=> -4x = -1
<=> x = 1/4
Vậy x = 1/4 là nghiệm phương trình.
4x + 7( x - 2 ) = -9x + 5
<=> 4x + 7x - 14 = -9x + 5
<=> 4x + 7x + 9x = 14 + 5
<=> 20x = 19
<=> x = 19/20
Vậy x = 19/20 là nghiệm phương trình.
5x - 2( 3x - 5 ) = 7x + 11
<=> 5x - 6x + 10 = 7x + 11
<=> 5x - 6x - 7x = 11 - 10
<=> -8x = -21
<=> x = 21/8
Vậy x = 21/8 là nghiệm phương trình.
( 5x + 2 )( x - 7 ) = 0
<=> \(\left[{}\begin{matrix}5x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{5}\\x=7\end{matrix}\right.\)
Vậy tập nghiệm phương trình S = { -2/5; 7 }
2x( x - 5 ) + 3( x - 5 ) = 0
<=> ( 2x + 3 )( x - 5 ) = 0
<=> \(\left[{}\begin{matrix}2x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=5\end{matrix}\right.\)
Vậy tập nghiệm phương trìh S = { -3/2; 5 }
\(\frac{5x-3}{6}=\frac{-2x+5}{9}\)
\(\Rightarrow6\left(-2x+5\right)=9\left(5x-3\right)\)
\(\Leftrightarrow-12x+30=45x-27\)
\(\Leftrightarrow-57x=-57\)
\(\Leftrightarrow x=1\)
Vậy x = 1 là nghiệm phương trình.
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{5x}{6}\)
\(\Leftrightarrow2x-3\left(2x+1\right)=5x\)
\(\Leftrightarrow2x-6x-3=5x\)
\(\Leftrightarrow-9x=3\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy x = -1/3 là nghiệm phương trình.
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow2x-6x-3=x-6x\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy x = 3/2 là nghiệm phương trình.
\(\frac{3}{x+1}=\frac{5}{2x+2}\) ĐKXĐ: x khác 1
<=> \(\frac{6}{2x+2}=\frac{5}{2x+2}\)( vô lí )
Vậy phương trình trên vô nghiệm.
# Học tốt #
\(\dfrac{3x^5+5x^3+1}{4x^4-7x^2+2}.\dfrac{x}{2x+3}.\dfrac{4x^4-7x^2+2}{3x^5+5x^3+1}\) ( sửa đề )
\(=\left[\dfrac{3x^5+5x^3+1}{4x^4-7x^2+2}.\dfrac{4x^4-7x^2+2}{3x^5+5x^3+1}\right].\dfrac{x}{2x+3}\)
\(=\dfrac{x}{2x+3}\)
a: \(\Leftrightarrow2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
=>5x=22
hay x=22/5
b: \(\Leftrightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
hay \(x\in\left\{3;-\dfrac{11}{10}\right\}\)
c: \(\Leftrightarrow x^3+2x^2-5x-10+5x=2x^2+17\)
\(\Leftrightarrow x^3+2x^2-10-2x^2-17=0\)
=>x3=27
=>x=3
d: \(\Leftrightarrow x^3+1-x^3+3x=15\)
=>3x=14
hay x=14/3