Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x,biết:
a/ x + 5x2 =0
⇔x ( 1 + 5x ) = 0
\(\Leftrightarrow\) x = 0 hoặc 1 + 5x = 0
1) x = 0
2) 1+ 5x = 0 \(\Leftrightarrow\) x = \(\frac{-1}{5}\)
Vậy: S = \(\left\{0;\frac{-1}{5}\right\}\)
b/x+1=(x+1)2
\(\Leftrightarrow\) (x+1) - (x+1)2 = 0
\(\Leftrightarrow\) ( x+ 1)(1-x-1) = 0
\(\Leftrightarrow\) (x+1).(-x) = 0
\(\Leftrightarrow\) x+1 = 0 hoặc x = 0
\(\Leftrightarrow\) x= -1 ; 0
Vậy: S=\(\left\{-1;0\right\}\)
c/ x3+x=0
\(\Leftrightarrow\) x(x2 + 1) = 0
\(\Leftrightarrow\) x = 0 hoặc x2 + 1 = 0
Ta có : x2 + 1 \(\ge\) 0 vs mọi x
Vậy: S = \(\left\{0\right\}\)
d/5x(x−2)−(2−x)=0
\(\Leftrightarrow\) 5x(x-2) + (x - 2) = 0
\(\Leftrightarrow\) (x - 2)(5x+1) = 0
\(\Leftrightarrow\) x - 2 = 0 hoặc 5x+ 1 = 0
\(\Leftrightarrow\) x = 2 hoặc x = \(\frac{-1}{5}\)
Vậy: S = \(\left\{\frac{-1}{5};2\right\}\)
g/ x(x−4)+(x−4)2=0
⇔ (x - 4)( x+x-4) = 0
\(\Leftrightarrow\) x - 4 = 0 hoặc 2x-4=0
\(\Leftrightarrow\) x = 4 hoặc x = 2
Vậy: S= \(\left\{2;4\right\}\)
h/ x2−3x=0
⇔x (x-3) = 0
\(\Leftrightarrow\) x = 0 hoặc x = 3
Vậy: S = \(\left\{0;3\right\}\)
Vậy: S= \(\left\{0;3\right\}\)
i/4x(x+1)=8(x+1)
⇔4x(x+1)-8(x+1) = 0
\(\Leftrightarrow\) 4(x+1) (x - 2) = 0
\(\Leftrightarrow\) x+1 = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x= -1 hoặc x = 2
Vậy: S=\(\left\{-1;2\right\}\)
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
Ta có : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x-2\right)-24=0\)
Đặt t = x2 + 5x - 1
Khi đó : (x2 + 5x) = t + 1 ; (x2 + 5x - 2) = t - 1
Ta có : C = (x2 + 5x - 2)2 (x2 + 5x - 2) - 24 = 0
=> (x2 + 5x - 2)3 = 24
MK chỉ giả được đến đây thôi
a) Ta có: \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{\left(2x+1\right)^2\cdot3}{15}-\frac{5\left(x-1\right)^2}{15}-\frac{7x^2-14x-5}{15}=0\)
\(\Leftrightarrow3\left(4x^2+4x+1\right)-5\left(x^2-2x+1\right)-7x^2+14x+5=0\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
\(\Leftrightarrow36x+3=0\)
\(\Leftrightarrow36x=-3\)
\(\Leftrightarrow x=\frac{-3}{36}\)
Vậy: \(x=\frac{-3}{36}\)
b) Ta có: \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\frac{201-x}{99}+\frac{203-x}{97}-\frac{205-x}{95}-3=0\)
\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)
\(\Leftrightarrow\frac{201-x+99}{99}+\frac{203-x+97}{97}+\frac{205-x+95}{95}=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\)
nên 300-x=0
\(\Leftrightarrow x=300\)
Vậy: x=300
c) Ta có: \(x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)(1)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1\ne0\forall x\)(2)
Từ (1) và (2) suy ra x+1=0
hay x=-1
Vậy: x=-1
d) Ta có: \(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt \(x^2+x-1=t\)
\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\)
\(\Leftrightarrow t^2-1-24=0\)
\(\Leftrightarrow t^2-25=0\)
\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)
\(\Leftrightarrow\left(x^2+x-1-5\right)\left(x^2+x-1+5\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\right]\)(3)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\ne0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
e) Ta có: \(\left(5x-3\right)-\left(4x-7\right)=0\)
\(\Leftrightarrow5x-3-4x+7=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy: x=-4
f) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{1}{3}\right\}\)
g) Ta có: \(x^2+6x-16=0\)
\(\Leftrightarrow x^2-2x+8x-16=0\)
\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-8\right\}\)
h) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;2\right\}\)
i) Ta có: \(x^2+x-2=0\)
\(\Leftrightarrow x^2-x+2x-2=0\)
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;-2\right\}\)
k) Ta có: \(3x^2+7x+2=0\)
\(\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;\frac{-1}{3}\right\}\)
l) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-2x-10x+5=0\)
\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
1) x^2 - 6x = 0
⇔ x ( x - 6 ) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy x = 0 hoặc x = 6
2) 2x^3 - 5x^2 - 12x = 0
⇔ 2x^3 - 8x^2 + 3x^2 - 12x = 0
⇔ 2x^2 ( x - 4 ) + 3x ( x - 4 ) = 0
⇔ ( 2x^2 + 3x ) ( x - 4 ) = 0
⇔ x ( 2x + 3 ) ( x - 4 ) = 0
⇔ \(\left[{}\begin{matrix}x=0\\2x+3=0\\x-4=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=-1,5\\x=4\end{matrix}\right.\)
Vậy x = 0 , x = -1,5 hoặc x = 4
3) ( x + 1 ) ( x + 2 ) - ( x + 2 ) ( x + 3 ) = 0
⇔ ( x + 2 ) ( x + 1 - x - 3 ) = 0
⇔ -2 ( x + 2 ) = 0
⇔ x = - 2
Vậy x = -2
a) \(3x^2-5x-12=0\)
\(\Leftrightarrow3x^2+4x-9x-12=0\)
\(\Leftrightarrow x\left(3x+4\right)-3\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x+4\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{4}{3}\\x=3\end{cases}}\)
b) \(7x^2-9x+2=0\)
\(\Leftrightarrow7x^2-7x-2x+2=0\)
\(\Leftrightarrow7x\left(x-1\right)-2\left(x-1\right)=0\).
\(\Leftrightarrow\left(7x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7x-2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{7}\\x=1\end{cases}}\)
casio fx 570vn
a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)
hay \(x\in\left\{0;-4;3\right\}\)
d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)
hay \(x\in\left\{-6;1;-1;-4\right\}\)
f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
hay \(x\in\left\{-3;2\right\}\)