\(x^3-5x^2+8x-4\)

b. \(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

******************************************************

a) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

b) \(x^3-3x+2=x^3+2x^2-2x^2-4x+x+2\)

\(=x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)

c) \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9\)

\(=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)

d) \(x^3+8x^2+17x+10=x^3+2x^2+6x^2+12x+5x+10\)

\(=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+6x+5\right)=\left(x+2\right)\left(x+5\right)\left(x+1\right)\)

e) \(x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)

\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+2x+4\right)\)

f) \(x^3+3x^2+3x+2=x^3+2x^2+x^2+2x+x+2\)

\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

13 tháng 10 2019

a) \(x^3-3x+2=\left(x^3+8\right)-\left(3x+6\right)\)

\(=\left(x+2\right)\left(x^2-2x+4\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)

b)\(x^3+8x^2+17x+10=\left(x^3+3x^2+2x\right)+\left(5x^2+15x+10\right)\)

\(=x\left(x^2+3x+2\right)+5\left(x^2+3x+2\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)

c) \(x^3-2x-4=\left(x^3-8\right)-\left(2x-4\right)\)

\(=\left(x-2\right)\left(x^2+2x+4\right)-2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)

d) \(x^3+x^2+4=x^3+2x^2-\left(x^2-4\right)=x^2\left(x+2\right)-\left(x-2\right)\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-x+2\right)\)

e) Kết quả là: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\) bạn tự tách đi, đánh nhiều mỏi tay quá!:((

f) Kết quả là: \(\left(3x+1\right)\left(x^2-5x+3\right)\)

29 tháng 9 2018

\(f,x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)

                                         \(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

                                          \(=\left(x+1\right)\left(x^2+2x+4\right)\)

\(g,x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)

                                            \(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

                                            \(=\left(x-1\right)\left(x^2-4x+4\right)\)

                                             \(=\left(x-1\right)\left(x-2\right)^2\)

a) = 3x(x-2x+1)

xog a

tốt

Bài làm

a) 3x2 - 6x2 + 3x

= -3x2 + 3x

= 3x( 1 - x )

b) 3x2 + 5x - 3xy - 5y

= ( 3x2 - 3xy ) + ( 5x - 5y )

= 3x( x - y ) + 5( x - y )

= ( x - y )( 3x + 5 )

c) x3 + 2x2 + x

= x( x2 + 2x + 1 )

= x( x2 + 2.x.1 + 12 )

= x( x + 1 )2

d) xy + y2 - x - y

= ( xy - x ) + ( y2 - y )

= x( y - 1 ) + y( y - 1 )

= ( y - 1 )( x +  y )

# Học tốt #

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

5 tháng 7 2017

a) \(x^3-5x^2+8x-4\)

= \(x^3-x^2-4x^2+4x+4x-4\)

= \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2-4x+4\right)\)

= \(\left(x-1\right)\left(x-2\right)^2\)

b) \(x^3-9x^2+6x+16\)

= \(\left(x-8\right)\left(x-2\right)\left(x+1\right)\)

c) \(x^3+2x-3\)

= \(x^3-x^2+x^2-x+3x-3\)

= \(x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2+x+3\right)\)

d) \(2x^3-12x^2+17x-2\)

= \(2x^3-4x^2-8x^2+16x+x-2\)

= \(2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right)\)

= \(\left(x-2\right)\left(2x^2-8x+1\right)\)

e) \(x^3-5x^2+3x+9\)

= \(x^3+x^2-6x^2-6x+9x+9\)

= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)

f) \(x^3-8x^2+17x+10\)

Câu này có vẻ sai đề, nghiệm cực kì khủng bố @@

g) \(x^3-2x-4\)

= \(x^3-2x^2+2x^2-4x+2x-4\)

= \(x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

= \(\left(x-2\right)\left(x^2+2x+2\right)\)

h) \(x^3+x^2+4\)

= \(x^3+2x^2-x^2+4\)

= \(x^2\left(x+2\right)-\left(x-2\right)\left(x+2\right)\)

= \(\left(x+2\right)\left(x^2-x+2\right)\)

i) \(x^3-7x+6\)

= \(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

NV
5 tháng 10 2019

Sử dụng định lý Bezout:

a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

b/ \(g\left(x\right)=0\Rightarrow x=-1\)

\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)

Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a

c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)

\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)

Thay \(x=1\Rightarrow a+b=-2\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)

d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)

a, 25-x2+4xy-4y2 

= 25-(x2-4xy+4y2

= 52-(x-2y)2 

= (5-x+2y)(5+x-2y)   

Các biểu thức sau bạn tự chứng minh nhé

20 tháng 10 2018

help me!!!

26 tháng 10 2022

b: \(=x^4+x^2+36-2x^3+12x^2-12x+x^2-6x+9\)

\(=x^4-2x^3+14x^2-18x+45\)

\(=x^4+9x^2-2x^3-18x+5x^2+45\)

\(=\left(x^2+9\right)\left(x^2-2x+5\right)\)

d: \(=2x^4+2x^3+6x^2-x^3-x^2-3x+x^2+x+3\)

\(=\left(x^2+x+3\right)\left(2x^2-x+1\right)\)

e: \(=3x^4-3x^3-3x^2-2x^3+2x^2+2x+2x^2-2x-2\)

\(=\left(x^2-x-1\right)\left(3x^2-2x+1\right)\)

16 tháng 7 2018

a)   \(x^3-2x^2-6x+12\)

\(=x^2\left(x-2\right)-6\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-6\right)\)

\(=\left(x-2\right)\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)

b)  \(x^4-7x^2+12\)

\(=x^4-3x^2-4x^2+12\)

\(=x^2\left(x^2-3\right)-4\left(x^2-3\right)\)

\(=\left(x^2-3\right)\left(x^2-4\right)\)

\(=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-2\right)\left(x+2\right)\)

c)  \(x^2-5x+4\)

\(=x^2-x-4x+4\)

\(=x\left(x-1\right)-4\left(x-1\right)\)

\(=\left(x-1\right)\left(x-4\right)\)

d)  \(3x^2+5x+2\)

\(=3x^2+3x+2x+2\)

\(=3x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(3x+2\right)\)

e)  \(x^3-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2 -1\right]\)

\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)