Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-3x+2=\left(x^3+8\right)-\left(3x+6\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)
b)\(x^3+8x^2+17x+10=\left(x^3+3x^2+2x\right)+\left(5x^2+15x+10\right)\)
\(=x\left(x^2+3x+2\right)+5\left(x^2+3x+2\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
c) \(x^3-2x-4=\left(x^3-8\right)-\left(2x-4\right)\)
\(=\left(x-2\right)\left(x^2+2x+4\right)-2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)
d) \(x^3+x^2+4=x^3+2x^2-\left(x^2-4\right)=x^2\left(x+2\right)-\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-x+2\right)\)
e) Kết quả là: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\) bạn tự tách đi, đánh nhiều mỏi tay quá!:((
f) Kết quả là: \(\left(3x+1\right)\left(x^2-5x+3\right)\)
\(f,x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
\(g,x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
Bài làm
a) 3x2 - 6x2 + 3x
= -3x2 + 3x
= 3x( 1 - x )
b) 3x2 + 5x - 3xy - 5y
= ( 3x2 - 3xy ) + ( 5x - 5y )
= 3x( x - y ) + 5( x - y )
= ( x - y )( 3x + 5 )
c) x3 + 2x2 + x
= x( x2 + 2x + 1 )
= x( x2 + 2.x.1 + 12 )
= x( x + 1 )2
d) xy + y2 - x - y
= ( xy - x ) + ( y2 - y )
= x( y - 1 ) + y( y - 1 )
= ( y - 1 )( x + y )
# Học tốt #
Câu 1:
\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)
a) \(x^3-5x^2+8x-4\)
= \(x^3-x^2-4x^2+4x+4x-4\)
= \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2-4x+4\right)\)
= \(\left(x-1\right)\left(x-2\right)^2\)
b) \(x^3-9x^2+6x+16\)
= \(\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
c) \(x^3+2x-3\)
= \(x^3-x^2+x^2-x+3x-3\)
= \(x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2+x+3\right)\)
d) \(2x^3-12x^2+17x-2\)
= \(2x^3-4x^2-8x^2+16x+x-2\)
= \(2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right)\)
= \(\left(x-2\right)\left(2x^2-8x+1\right)\)
e) \(x^3-5x^2+3x+9\)
= \(x^3+x^2-6x^2-6x+9x+9\)
= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)
f) \(x^3-8x^2+17x+10\)
Câu này có vẻ sai đề, nghiệm cực kì khủng bố @@
g) \(x^3-2x-4\)
= \(x^3-2x^2+2x^2-4x+2x-4\)
= \(x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
= \(\left(x-2\right)\left(x^2+2x+2\right)\)
h) \(x^3+x^2+4\)
= \(x^3+2x^2-x^2+4\)
= \(x^2\left(x+2\right)-\left(x-2\right)\left(x+2\right)\)
= \(\left(x+2\right)\left(x^2-x+2\right)\)
i) \(x^3-7x+6\)
= \(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
a, 25-x2+4xy-4y2
= 25-(x2-4xy+4y2)
= 52-(x-2y)2
= (5-x+2y)(5+x-2y)
Các biểu thức sau bạn tự chứng minh nhé
b: \(=x^4+x^2+36-2x^3+12x^2-12x+x^2-6x+9\)
\(=x^4-2x^3+14x^2-18x+45\)
\(=x^4+9x^2-2x^3-18x+5x^2+45\)
\(=\left(x^2+9\right)\left(x^2-2x+5\right)\)
d: \(=2x^4+2x^3+6x^2-x^3-x^2-3x+x^2+x+3\)
\(=\left(x^2+x+3\right)\left(2x^2-x+1\right)\)
e: \(=3x^4-3x^3-3x^2-2x^3+2x^2+2x+2x^2-2x-2\)
\(=\left(x^2-x-1\right)\left(3x^2-2x+1\right)\)
a) \(x^3-2x^2-6x+12\)
\(=x^2\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-6\right)\)
\(=\left(x-2\right)\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
b) \(x^4-7x^2+12\)
\(=x^4-3x^2-4x^2+12\)
\(=x^2\left(x^2-3\right)-4\left(x^2-3\right)\)
\(=\left(x^2-3\right)\left(x^2-4\right)\)
\(=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-2\right)\left(x+2\right)\)
c) \(x^2-5x+4\)
\(=x^2-x-4x+4\)
\(=x\left(x-1\right)-4\left(x-1\right)\)
\(=\left(x-1\right)\left(x-4\right)\)
d) \(3x^2+5x+2\)
\(=3x^2+3x+2x+2\)
\(=3x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x+2\right)\)
e) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2 -1\right]\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
******************************************************
a) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
b) \(x^3-3x+2=x^3+2x^2-2x^2-4x+x+2\)
\(=x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)
c) \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9\)
\(=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)
d) \(x^3+8x^2+17x+10=x^3+2x^2+6x^2+12x+5x+10\)
\(=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+6x+5\right)=\left(x+2\right)\left(x+5\right)\left(x+1\right)\)
e) \(x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
f) \(x^3+3x^2+3x+2=x^3+2x^2+x^2+2x+x+2\)
\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+x+1\right)\)