Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+3\right)\left(x^2-3x+9\right)=7x^3+21x\\ \Leftrightarrow x^3+27=7x^3+21x\\ \Leftrightarrow6x^3+21x-27=0\\ \Leftrightarrow\left(6x^3-6x^2\right)+\left(6x^2-6x\right)+\left(27x-27\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6x^2+6x+27\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x^2+6x+27=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\6\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{51}{2}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\6\left(x+\dfrac{1}{2}\right)^2+\dfrac{51}{2}=0\left(vô.lí\right)\end{matrix}\right.\)
Vậy \(x=1\)
\(\Leftrightarrow x^3+27-7x^3-21x=0\)
\(\Leftrightarrow-6x^3-21x+27=0\)
\(\Leftrightarrow-6x^3+6x-27x+27=0\)
\(\Leftrightarrow-6x\left(x-1\right)\left(x+1\right)-27\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x^2+6x+27\right)=0\)
hay x=1
a) A = x4 + x2 + 2
Do : x4 ≥ 0 ∀x
x2 ≥ 0 ∀x
⇒ x4 + x2 + 2 ≥ 2
⇒ AMin = 2 ⇔ x = 0
b) B = 3x2 - 21x + 15
B = 3( x2 - \(2\dfrac{7}{2}x+\dfrac{49}{4}\) ) + 15 - \(\dfrac{147}{4}\)
B = 3( x - \(\dfrac{7}{2}\))2 - \(\dfrac{87}{4}\)
Do : 3( x - \(\dfrac{7}{2}\))2 ≥ 0 ∀x
⇒ 3( x - \(\dfrac{7}{2}\))2 - \(\dfrac{87}{4}\) ≥ - \(\dfrac{87}{4}\)
⇒ BMin = - \(\dfrac{87}{4}\) ⇔ x = \(\dfrac{7}{2}\)
c) C = x2 - 4xy + 5y2 + 10x - 22y + 28
C = x2 - 4xy + 4y2 + 10x - 20y + 25 + y2 - 2y + 1 + 2
C = ( x - 2y)2 + 10( x - 2y) + 25 + ( y - 1)2 + 2
C = ( x - 2y + 5)2 + ( y - 1)2 + 2
Do : ( x - 2y + 5)2 ≥ 0 ∀xy
( y - 1)2 ≥ 0 ∀y
⇒ ( x - 2y + 5)2 + ( y - 1)2 + 2 ≥ 2
⇒ CMin = 2 ⇔ x = - 3 ; y = 1
g: =>(x-1)(x-2)=0
=>x=1 hoặc x=2
i: \(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)
=>x=1 hoặc x=-2
Câu 7:
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
6, (x-5).(x-4)=10-2x
(x-5).(x-4)+2(x-5)=0
(x-5)(x-2)=0
=>x=5, x=2
7, (x^2+1)(x-2)+2x=4
x^3-2x^2+x-2+2x=4
x^3-2x^2+3x-2-4=0
x^3-2x^2+3x-6=0
x^2(x-2)+3(x-2)=0
(x-2)(x^2+3)=0
th1: x=2
th2: x^2+3>0 với mọi x thuộc Z
8, ( đề cs sai hông , giải hong ra:>)
Ta có: (3x-3)(5-21x)+(7x+4)(6x-5)=45
\(\Leftrightarrow15x-63x^2-15+63x+42x^2-35x+24x-20-45=0\)
\(\Leftrightarrow-21x^2+67x-80=0\)
\(\Leftrightarrow-21\left(x^2-\frac{67}{21}x-\frac{80}{21}\right)=0\)
mà -21<0
nên \(x^2-\frac{67}{21}x-\frac{80}{21}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{67}{42}+\frac{4489}{1764}-\frac{11209}{1764}=0\)
\(\Leftrightarrow\left(x-\frac{67}{42}\right)^2=\frac{11209}{1764}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{67}{42}=\frac{\sqrt{11209}}{42}\\x-\frac{67}{42}=-\frac{\sqrt{11209}}{42}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{67+\sqrt{11209}}{42}\\x=\frac{67-\sqrt{11209}}{42}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{67+\sqrt{11209}}{42};\frac{67-\sqrt{11209}}{42}\right\}\)
a) x3-10x2+21x
= x3-7x2-3x2+21x
= x2(x-7)-3x(x-7)
= (x2-3x)(x-7)
b) 3x3-7x2-20x
= x(3x2-7x-20)
= x(3x2+5x-12x-20)
= x[x(3x+5)-4(3x+5)]
= x(x-4)(3x+5)
\(P=21x^4+3x^3+2036x^2+3x+2015\)
\(=\left(21x^4+21x^2\right)+\left(3x^3+3x\right)+\left(2015x^2+2015\right)\)
\(=\left(x^2+1\right)\left(21x^2+3x+2015\right)\)
\(3x^3=21x\)
=> \(x^2=\frac{21x}{3x}\)
=> \(x^2=7\)
=> \(\orbr{\begin{cases}x=\sqrt{7}\\x=-\sqrt{7}\end{cases}}\)
\(3x^3-21x=0\)
\(3x.\left(x^2-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=7\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{7}\end{cases}}}\)
Vậy x=0 hay x=\(\pm\sqrt{7}\)