Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5\cdot\left(x^2-3x+1\right)+x\cdot\left(1-5x\right)\right)-\left(x-2\right)=0\)
\(7-15x=0\)
\(-15x=-7\)
\(x=\frac{7}{15}=0.467\)
\(b,\)câu b dài quá nên mik lười, vậy mik ghi kết quả thôi nhé
\(x=\frac{2}{19}=0.105\)
\(c,\)câu c cũng vậy mik ghi kết quả thôi nhé bn
\(x=-\frac{6}{11}=-0.545\)
1/
a. \(3x\left(5x^2-2x-1\right)\)
\(=15x^3-6x^2-3x\)
b. \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c. \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)
\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)
\(=2x^3-x^2y-2xy^2\)
a) thiếu đề
b) \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)
\(15x-63x^2-15+63x+63x^2-35x+36x-20=44\)
\(79x-35=40\)
\(79x=75\)
\(x=\frac{75}{79}\)
1
\(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)
=> \(-3x^2+15x+5x-5+3x^2=4-x\)
=> \(20x-5=4-x\)
=> \(21x=9\)
=> \(x=\dfrac{3}{7}\)
Vậy x = \(\dfrac{3}{7}\)
2,
\(7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)
=> \(7x^2-14x-5x+5=7x^2+3\)
=> \(-14x-5x+5=3\)
=> \(-19x=-2\)
=> \(x=\dfrac{2}{19}\)
Vậy \(x=\dfrac{2}{19}\)
3,
\(3\left(5x-1\right)-x\left(x-2\right)+x^2-13x=7\)
=> \(15x-3-x^2+2x+x^2-13x=7\)
=> \(4x-3=7\)
=> 4x = 10
=> x = \(\dfrac{5}{2}\)
Vậy x = \(\dfrac{5}{2}\)
4,
\(\dfrac{1}{5}x\left(10x-15\right)-2x\left(x-5\right)=12\)
=> \(2x^2-3x-2x^2+10x=12\)
=> 7x = 12
=> x = \(\dfrac{12}{7}\)
Vậy x = \(\dfrac{12}{7}\)
\(1,5\left(x^2-3x+1\right)+x\left(1-5x\right)=x-2\)
\(\Leftrightarrow5x^2-15x+5+x-5x^2-x+2=0\)
\(\Leftrightarrow-15x^2+7=0\)
\(\Leftrightarrow x^2=\frac{7}{15}\)
\(\Leftrightarrow x=\overset{+}{-}\sqrt{\frac{7}{15}}\)
\(2,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)
\(\Leftrightarrow7x^2-14x-5x+5-7x-3=0\)
\(\Leftrightarrow7x^2-26x+2=0\)
\(\Leftrightarrow7\left(x^2-\frac{26}{7}x+\frac{169}{49}\right)-\frac{155}{7}=0\)
\(\Leftrightarrow7\left(x-\frac{13}{7}\right)^2-\frac{155}{7}=0\)
\(\Leftrightarrow\left(\sqrt{7}x-\frac{13}{\sqrt{7}}-\sqrt{\frac{155}{7}}\right)\left(\sqrt{7}x-\frac{13}{\sqrt{7}}+\sqrt{\frac{155}{7}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{155}+13}{7}\\x=\frac{-\sqrt{155}+13}{7}\end{matrix}\right.\)
a) ( x2 + 1/x + 1/9 ).( x - 1/3 ) - ( x- 1/3 )3
\(=\left(x-\frac{1}{3}\right)\left[\left(x^2+\frac{1}{x}+\frac{1}{9}\right)-\left(x-\frac{1}{3}\right)^2\right]\)
\(=\left(x-\frac{1}{3}\right)\left[x^2+\frac{1}{x}+\frac{1}{9}-x^2+\frac{2x}{3}-\frac{1}{9}\right]\)
\(=\left(x-\frac{1}{3}\right)\left[\frac{2x}{3}+\frac{1}{x}\right]\)
Ukm
It's very hard
l can't do it
Sorry!
a) \(x^4-x^3-7x^2+x+6=0\)
\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt
b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)
\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)
Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)
\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)
\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)
Từ đó tính đc x
d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)
\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+5=a\), khi đó pt có dạng:
\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
1 ) Thực hiện phép tính :
a ) \(-\frac{1}{3}xz\left(-9xy+15yz\right)+3x^2\left(2yz^2-yz\right)\)
\(=3x^2yz-5xyz^2+6x^2yz^2-3x^2yz\)
\(=-5xyz^2+6x^2yz^2\)
b ) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-5x^2-x-2x^2+10x-2-x^3-11x\)
\(=-7x^2-2x-2-x^3\)
c ) \(\left(x^3+5x^2-2x+1\right)\left(x-7\right)\)
\(=x^4+5x^3-2x^2+x-7x^3-35x^2+14x-7\)
\(=x^4-2x^3-37x^2+15x-7\)
d ) \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)
\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)
\(=2x^3-x^2y-2xy^2+y^3\)
e ) \(\left[\left(x^2-2xy+2y^2\right)\left(x+2y\right)-\left(x^2-4y^2\right)\left(x-y\right)\right]2xy\)
( để xem lại )
2 Tìm x
a ) \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)
\(\Leftrightarrow30x^2+18x+3x-30x^2=7\)
\(\Leftrightarrow21x=7\)
\(\Leftrightarrow x=3\)
b ) Sai đề
c ) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^2\left(x+8\right)=27\)
( Để xem lại )
mình chép đúng theo đề cô cho mà sao lại sai được ,hay cô cho sai đề
1/ 0, 71
2/ Tương tự 2 câu 1, 3 nhé!
3/ 11,25
Tick đúng nha! Thanks!
\(\left(x+3\right)\left(x^2-3x+9\right)=7x^3+21x\\ \Leftrightarrow x^3+27=7x^3+21x\\ \Leftrightarrow6x^3+21x-27=0\\ \Leftrightarrow\left(6x^3-6x^2\right)+\left(6x^2-6x\right)+\left(27x-27\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6x^2+6x+27\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x^2+6x+27=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\6\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{51}{2}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\6\left(x+\dfrac{1}{2}\right)^2+\dfrac{51}{2}=0\left(vô.lí\right)\end{matrix}\right.\)
Vậy \(x=1\)
\(\Leftrightarrow x^3+27-7x^3-21x=0\)
\(\Leftrightarrow-6x^3-21x+27=0\)
\(\Leftrightarrow-6x^3+6x-27x+27=0\)
\(\Leftrightarrow-6x\left(x-1\right)\left(x+1\right)-27\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x^2+6x+27\right)=0\)
hay x=1