Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>9(2x+1)=6(3-x)
=>3(2x+1)=2(3-x)
=>6x+3=6-2x
=>8x=3
=>x=3/8
b: =>-3x^2-2+3x^2-18x=-26
=>-18x=-24
=>x=4/3
F= 21x8 - 24x6 + 9x5 + 3x3 + 6x2 + 2006
= 3x2( 7x6 - 8x4 + 3x3 + x +2) +2006
= 0 + 2006
= 0
a)x=-2
b)x=1
c)x=1/2
f)x=1 hoặc x=-1
h)x=0 hoặc x=6
i)x=2
hok tốt!
_Lan Lan_
Áp dụng hằng đẳng thức:\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
Áp dụng vào từng bài là được:
\(VD1:x^3+3x^2+3x+1=-1\)
\(\Rightarrow\left(x+1\right)^3=-1\)
\(\Rightarrow x=-2\)
\(VD2:x^3-9x^2+27x-27=-8\)
\(\Rightarrow\left(x-3\right)^3=-8\)
\(\Rightarrow x=1\)
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
a, ĐKXĐ của biểu thức :
\(\Leftrightarrow\)x2-2x+1\(\ne\)0
\(\Leftrightarrow\left(x-1\right)^2\ne0\)
\(\Leftrightarrow x-1\ne0\)
\(\Leftrightarrow x\ne1\)
Vậy ...
b, ĐKXĐ của biểu thức :
\(\Leftrightarrow5x+3\ne0\)
\(\Leftrightarrow x\ne-\frac{3}{5}\)
Vậy ...
c, ĐKXĐ của biểu thức :
\(\Leftrightarrow x^2+x-6\ne0\)
\(\Leftrightarrow x^2+3x-2x-6\ne0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)\ne0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ne0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)
\(\)Vậy ĐKXĐ của biểu thức là x\(\ne-3vàx\ne2\)
a) Ta có: \(\frac{x-4}{x+1}=\frac{x-15}{x+6}\)
\(\Rightarrow\)\(x^2+6x-4x-24=x^2-15x+x-15\)(nhân chéo)
\(\Rightarrow x^2+2x-24=x^2-14x-15\)
\(\Rightarrow16x=9\)
\(\Rightarrow x=\frac{9}{16}\)
R(x) = 2x2 + 3x - 1
- M(x) = -x3 + x2
x3 + x2 + 3x - 1
Vậy R(x) - M(x) = x3 + x2 + 3x - 1
mình xem rùi ra kết quả ko tính được nên mới hỏi